基于GA遗传优化的混合发电系统优化配置算法matlab仿真

本文涉及的产品
全球加速 GA,每月750个小时 15CU
简介: **摘要:**该研究利用遗传算法(GA)对混合发电系统进行优化配置,旨在最小化风能、太阳能及电池储能的成本并提升系统性能。MATLAB 2022a用于实现这一算法。仿真结果展示了一系列图表,包括总成本随代数变化、最佳适应度随代数变化,以及不同数据的分布情况,如负荷、风速、太阳辐射、弃电、缺电和电池状态等。此外,代码示例展示了如何运用GA求解,并绘制了发电单元的功率输出和年变化。该系统原理基于GA的自然选择和遗传原理,通过染色体编码、初始种群生成、适应度函数、选择、交叉和变异操作来寻找最优容量配置,以平衡成本、效率和可靠性。

1.课题概述
基于GA遗传优化的混合发电系统优化配置算法,优化风力发电,光伏发电以及蓄电池发电。

2.系统仿真结果

1.jpeg
2.jpeg
3.jpeg
4.jpeg
5.jpeg
6.jpeg
7.jpeg
8.jpeg
9.jpeg
10.jpeg
11.jpeg
12.jpeg
13.jpeg

3.核心程序与模型
版本:MATLAB2022a

Apv,Aw,Cb,CT,LPSP


figure(1);
plot(Iteration,BestJ); 
xlabel('Number of generations');ylabel('Total cost($)');
grid on;


figure(2);
plot(Iteration,Bfi);
xlabel('Number of generations');ylabel('Best F');
grid on;
i=1:1:8760;


figure(3);
subplot(311);
plot(i,LoadDataPV,'r');
xlabel('Time(h)');ylabel('Load data(kW) ');
grid on;
subplot(312);
func_plot_phist(LoadDataPV,50);
xlabel('Load data(kW)');
ylabel('Percent(%)');
title('原数据概论图');
subplot(313);
func_plot_phist2(LoadDataPV,50);
xlabel('Load data(kW)');
ylabel('Percent(%)');
title('去掉两端极值后概论图');


figure(4);
subplot(311);
plot(i,WindDataPV,'y');
xlabel('Time(h)');ylabel('Wind speed(m/s)');
grid on;
subplot(312);
func_plot_phist(WindDataPV,50);
xlabel('Wind speed(m/s)');
ylabel('Percent(%)');
title('原数据概论图');
subplot(313);
func_plot_phist2(WindDataPV,50);
xlabel('Wind speed(m/s)');
ylabel('Percent(%)');
title('去掉两端极值后概论图');

figure(5);
subplot(311);
plot(i,SolarDataPVR,'g');
xlabel('Time(h)');ylabel('Hourly solar irradiation(kWh/m2)');
grid on;
subplot(312);
func_plot_phist(SolarDataPVR,50);
xlabel('Hourly solar irradiation(kWh/m2)');
ylabel('Percent(%)');
title('原数据概论图');
subplot(313);
func_plot_phist2(SolarDataPVR,50);
xlabel('Hourly solar irradiation(kWh/m2)');
ylabel('Percent(%)');
title('去掉两端极值后概论图');

i=1:1:8760+1;
figure(6);
subplot(311);
plot(i,Pdump,'m');
xlabel('Time(h)');ylabel('Excess power(W)');
subplot(312);
func_plot_phist(Pdump,50);
xlabel('Excess power(W)');
ylabel('Percent(%)');
title('原数据概论图');
subplot(313);
func_plot_phist2(Pdump,50);
xlabel('Excess power(W)');
ylabel('Percent(%)');
title('去掉两端极值后概论图');

figure(7);
subplot(311);
plot(i,Pdeficit,'k');
xlabel('Time(h)');ylabel('Deficient power(W)');
grid on;
subplot(312);
func_plot_phist(Pdeficit,50);
xlabel('Deficient power(W)');
ylabel('Percent(%)');
title('原数据概论图');
subplot(313);
func_plot_phist2(Pdeficit,50);
xlabel('Deficient power(W)');
ylabel('Percent(%)');
title('去掉两端极值后概论图');

figure(8);
Pdeficit_month = zeros(floor(length(Pdeficit)/720),1);
for mm = 1:length(Pdeficit_month)
    Pdeficit_month(mm) = sum(Pdeficit(720*(mm-1)+1:720*mm));
end
j = 1:length(Pdeficit_month);
subplot(311);
plot(j,Pdeficit_month,'k-o');
xlabel('Month');ylabel('Deficient power(W)');
grid on;
subplot(312);
func_plot_phist(Pdeficit_month,50);
xlabel('Deficient power(W)');
ylabel('Percent(%)');
title('原数据概论图');
subplot(313);
func_plot_phist2(Pdeficit_month,50);
xlabel('Deficient power(W)');
ylabel('Percent(%)');
title('去掉两端极值后概论图');


figure(9);
subplot(311);
plot(i,SOC,'g');
xlabel('Time(h)');ylabel('SOC(%)');
grid on;
subplot(312);
func_plot_phist(SOC,50);
xlabel('SOC');
ylabel('Percent(%)');
title('原数据概论图');
subplot(313);
func_plot_phist2(SOC,50);
xlabel('SOC');
ylabel('Percent(%)');
title('去掉两端极值后概论图');

figure(10);
plot3(i,Pdump,SOC,'g');
xlabel('Time(h)');ylabel('Pdump(W)');zlabel('SOC(%)');
grid on;


%7、画出风力发电机在这一年中产生的功率图
load WindTurbingPower.mat 
figure(11);
j = 1:length(Pw)
subplot(311);
plot(j,Pw,'k-');
xlabel('hour');ylabel('WindTurbingPower(W)');
grid on;
Pw_month = zeros(floor(length(Pw)/720),1);
for mm = 1:length(Pw_month)
    Pw_month(mm) = sum(Pw(720*(mm-1)+1:720*mm));
end
j = 1:length(Pw_month);
subplot(312);
plot(j,Pw_month,'k-');
xlabel('Month');ylabel('WindTurbingPower(W)');
grid on;
subplot(313);
func_plot_phist(Pw,50);
xlabel('WindTurbingPower(W)');
ylabel('Percent(%)');




%8、画出光伏发电机在这一年中产生的功率图
load SolarPower.mat 
figure(12);
j = 1:length(Ppv)
subplot(311);
plot(j,Ppv,'k-');
xlabel('hour');ylabel('SolarPower(W)');
grid on;
Ppv_month = zeros(floor(length(Ppv)/720),1);
for mm = 1:length(Ppv_month)
    Ppv_month(mm) = sum(Ppv(720*(mm-1)+1:720*mm));
end
j = 1:length(Ppv_month);
subplot(312);
plot(j,Ppv_month,'k-');
xlabel('Month');ylabel('SolarPower(W)');
grid on;
subplot(313);
func_plot_phist(Ppv,50);
xlabel('SolarPower(W)');
ylabel('Percent(%)');

%9、画出风力发电机和光伏发电机在这一年中产生的总功率图
figure(13);
PP= Pw + Ppv;
j = 1:length(PP)
subplot(311);
plot(j,PP,'k-');
xlabel('hour');ylabel('总功率(W)');
grid on;
PP_month = zeros(floor(length(PP)/720),1);
for mm = 1:length(PP_month)
    PP_month(mm) = sum(PP(720*(mm-1)+1:720*mm));
end
j = 1:length(PP_month);
subplot(312);
plot(j,PP_month,'k-');
xlabel('Month');ylabel('总功率(W)');
grid on;
subplot(313);
func_plot_phist(PP,50);
xlabel('总功率(W)');
ylabel('Percent(%)');
02_020m

4.系统原理简介
基于遗传算法(Genetic Algorithm, GA)的混合发电系统优化配置算法是一种通过模拟自然进化过程来求解优化问题的方法。在混合发电系统中,通常包含多种不同类型的发电单元,如风力发电、光伏发电、柴油发电机等。这些发电单元在成本、效率、可靠性等方面存在差异,因此需要通过优化配置来实现系统的经济性、可靠性和环保性等目标。

4.1遗传算法基本原理
遗传算法是一种启发式搜索算法,它模拟了生物进化过程中的自然选择和遗传学原理。在遗传算法中,问题的解被编码成“染色体”(或称为“基因串”),每个染色体代表问题的一个潜在解。算法通过选择、交叉(杂交)和变异等操作来不断迭代优化染色体,最终找到问题的最优解或近似最优解。

4.2 混合发电系统优化配置问题
混合发电系统的优化配置问题可以描述为:在给定的负荷需求、资源条件和技术经济参数的约束下,确定各种发电单元的最优容量配置,以最小化系统的总成本(包括投资成本、运行维护成本、燃料成本等),同时满足系统的可靠性、环保性等要求。

4.3 基于GA的优化配置算法
染色体编码
在混合发电系统的优化配置问题中,每个染色体可以表示为一个发电单元的容量配置方案。例如,对于一个包含风力发电、光伏发电和柴油发电机的系统,染色体可以编码为 [风力发电机容量, 光伏发电容量, 柴油发电机容量]。

初始种群生成
初始种群是遗传算法的起点,它由一定数量的随机生成的染色体组成。这些染色体代表了问题的潜在解。

适应度函数
适应度函数用于评估染色体的优劣。在混合发电系统的优化配置问题中,适应度函数通常与系统的总成本成反比。即,成本越低的配置方案具有更高的适应度。

选择操作
选择操作根据染色体的适应度来选择优秀的染色体进入下一代。常用的选择方法有轮盘赌选择、锦标赛选择等。

交叉操作
交叉操作模拟了生物进化中的基因重组过程。在遗传算法中,通过交换两个染色体的部分基因来生成新的染色体。

变异操作
变异操作模拟了生物进化中的基因突变过程。在遗传算法中,通过随机改变染色体中的某个基因来引入新的遗传信息。

   例如,对于染色体 [风力发电机容量, 光伏发电容量, 柴油发电机容量],可以选择变异其中的光伏发电容量部分,将其替换为一个随机生成的新值。
相关文章
|
11天前
|
算法 调度
基于遗传模拟退火混合优化算法的车间作业最优调度matlab仿真,输出甘特图
车间作业调度问题(JSSP)通过遗传算法(GA)和模拟退火算法(SA)优化多个作业在并行工作中心上的加工顺序和时间,以最小化总完成时间和机器闲置时间。MATLAB2022a版本运行测试,展示了有效性和可行性。核心程序采用作业列表表示法,结合遗传操作和模拟退火过程,提高算法性能。
|
15天前
|
机器学习/深度学习 算法 调度
基于ACO蚁群优化的VRPSD问题求解matlab仿真,输出规划路径结果和满载率
基于ACO蚁群优化的VRPSD问题求解MATLAB仿真,输出ACO优化的收敛曲线、规划路径结果及每条路径的满载率。在MATLAB2022a版本中运行,展示了优化过程和最终路径规划结果。核心程序通过迭代搜索最优路径,更新信息素矩阵,确保找到满足客户需求且总行程成本最小的车辆调度方案。
|
1月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于GA遗传优化的GroupCNN分组卷积网络时间序列预测算法matlab仿真
该算法结合了遗传算法(GA)与分组卷积神经网络(GroupCNN),利用GA优化GroupCNN的网络结构和超参数,提升时间序列预测精度与效率。遗传算法通过模拟自然选择过程中的选择、交叉和变异操作寻找最优解;分组卷积则有效减少了计算成本和参数数量。本项目使用MATLAB2022A实现,并提供完整代码及视频教程。注意:展示图含水印,完整程序运行无水印。
|
16天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于GA-PSO-SVM算法的混沌背景下微弱信号检测matlab仿真
本项目基于MATLAB 2022a,展示了SVM、PSO、GA-PSO-SVM在混沌背景下微弱信号检测中的性能对比。核心程序包含详细中文注释和操作步骤视频。GA-PSO-SVM算法通过遗传算法和粒子群优化算法优化SVM参数,提高信号检测的准确性和鲁棒性,尤其适用于低信噪比环境。
|
1月前
|
算法 决策智能
基于GA-PSO遗传粒子群混合优化算法的TSP问题求解matlab仿真
本文介绍了基于GA-PSO遗传粒子群混合优化算法解决旅行商问题(TSP)的方法。TSP旨在寻找访问一系列城市并返回起点的最短路径,属于NP难问题。文中详细阐述了遗传算法(GA)和粒子群优化算法(PSO)的基本原理及其在TSP中的应用,展示了如何通过编码、选择、交叉、变异及速度和位置更新等操作优化路径。算法在MATLAB2022a上实现,实验结果表明该方法能有效提高求解效率和解的质量。
|
6月前
|
机器学习/深度学习 算法
【MATLAB】GA_BP神经网络时序预测算法
【MATLAB】GA_BP神经网络时序预测算法
144 8
|
3月前
|
算法
基于GA-PSO遗传粒子群混合优化算法的CVRP问题求解matlab仿真
本文介绍了一种基于GA-PSO混合优化算法求解带容量限制的车辆路径问题(CVRP)的方法。在MATLAB2022a环境下运行,通过遗传算法的全局搜索与粒子群算法的局部优化能力互补,高效寻找最优解。程序采用自然数编码策略,通过选择、交叉、变异操作及粒子速度和位置更新,不断迭代直至满足终止条件,旨在最小化总行驶距离的同时满足客户需求和车辆载重限制。
|
4月前
|
传感器 机器学习/深度学习 算法
基于GA遗传算法的WSN网络节点覆盖优化matlab仿真
本研究应用遗传优化算法于无线传感器网络(WSN),优化节点布局与数量,以最小化节点使用而最大化网络覆盖率。MATLAB2022a环境下,算法通过选择、交叉与变异操作,逐步改进节点配置,最终输出收敛曲线展现覆盖率、节点数及适应度值变化。无线传感器网络覆盖优化问题通过数学建模,结合遗传算法,实现目标区域有效覆盖与网络寿命延长。算法设计中,采用二进制编码表示节点状态,适应度函数考量覆盖率与连通性,通过选择、交叉和变异策略迭代优化,直至满足终止条件。
|
4月前
|
算法 数据安全/隐私保护
基于GA遗传优化算法的Okumura-Hata信道参数估计算法matlab仿真
在MATLAB 2022a中应用遗传算法进行无线通信优化,无水印仿真展示了算法性能。遗传算法源于Holland的理论,用于全局优化,常见于参数估计,如Okumura-Hata模型的传播损耗参数。该模型适用于150 MHz至1500 MHz的频段。算法流程包括选择、交叉、变异等步骤。MATLAB代码执行迭代,计算目标值,更新种群,并计算均方根误差(RMSE)以评估拟合质量。最终结果比较了优化前后的RMSE并显示了SNR估计值。
68 7
|
5月前
|
算法
基于GA-PSO遗传粒子群混合优化算法的VRPTW问题求解matlab仿真
摘要: 本文介绍了考虑时间窗的车辆路径问题(VRPTW),在MATLAB2022a中进行测试。VRPTW涉及车辆从配送中心出发,服务客户并返回,需在指定时间窗内完成且满足车辆容量限制,目标是最小化总行驶成本。文章探讨了遗传算法(GA)和粒子群优化(PSO)的基本原理及其在VRPTW中的应用,包括编码、适应度函数、选择、交叉、变异等步骤。同时,提出了动态惯性权重、精英策略、邻域搜索、多种群和启发式信息等优化策略,以应对时间窗限制并提升算法性能。
134 11