538个代码示例!麻省理工教授的Python程序设计+人工智能案例实践

本文涉及的产品
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介: Python简单易学,且提供了丰富的第三方库,可以用较少的代码完成较多的工作,使开发者能够专注于如何解决问题而只花较少的时间去考虑如何编程。此外,Python还具有免费开源、跨平台、面向对象、胶水语言等优点,在系统编程、图形界面开发、科学计算、Web开发、数据分析、人工智能等方面有广泛应用。尤其是在数据分析和人工智能方面,Python已成为最受开发者欢迎的编程语言之一,不仅大量计算机专业人员选择使用Python进行快速开发,许多非计算机专业人员也纷纷选择Python语言来解决专业问题。由于Python应用广泛,关于Python的参考书目前已经有很多,但将Python编程与数据分析、人工智

Python简单易学,且提供了丰富的第三方库,可以用较少的代码完成较多的工作,使开发者能够专注于如何解决问题而只花较少的时间去考虑如何编程。


此外,Python还具有免费开源、跨平台、面向对象、胶水语言等优点,在系统编程、图形界面开发、科学计算、Web开发、数据分析、人工智能等方面有广泛应用。


尤其是在数据分析和人工智能方面,Python已成为最受开发者欢迎的编程语言之一,不仅大量计算机专业人员选择使用Python进行快速开发,许多非计算机专业人员也纷纷选择Python语言来解决专业问题。


由于Python应用广泛,关于Python的参考书目前已经有很多,但将Python编程与数据分析、人工智能等领域紧密结合的参考书尚不多见。这就导致开发者在学习Python编程时难以与实际应用结合,从而造成不知道如何应用Python去解决实际问题的状况。


今天给小伙伴们带来了一份Python程序设计与人工智能案例实践的手册,该手册提供了538个代码示例(从单个代码段到大量的计算机科学、数据科学、人工智能和大数据案例)。

这份手册由浅入深,共分为四大部分,不多废话,下面将内容展示出来:

第一部分 Python基础知识快速入门

这部分内容由第1~5章组成,涉及计算机和Python、Python程序设计、控制语句、函数、序列(列表和元组)方面的内容。通过学习该部分,读者应掌握Python开发环境的使用方法、Python中基础数据的存储和处理方法,尤其要熟练运用模块化思想进行问题分解、通过函数实现各模块功能。

第1章 Python及大数据概述

第2章 Python程序设计概述

第3章 控制语句

第4章 函数

第5章 序列:列表和元组

第二部分 Python数据结构、字符串和文件

这部分内容为Python数据结构、字符串和文件,由第6~9章组成,涉及字典和集合、使用NumPy进行面向数组的编程、字符串、文件和异常方面的内容。通过学习该部分,读者应掌握字典和集合的适用场景、NumPy存储数据的优势和具体使用方法、字符串的常用操作、正则表达式的作用。

第6章 字典和集合

第7章 使用NumP,进行面向数组的编程

第8章 字符串:深入讨论

第9章 文件和异常

第三部分 Python高级主题

这部分内容为Python高级主题,即第10章的面向对象编程。通过学习该部分,读者应掌握面向对象的概念及面向对象程序的设计和编写方法,在实际中熟练运用面向对象的方式搭建系统。

第10章 面向对象编程

第四部分 人工智能、云和大数据案例研究

这部分内容为人工智能、云和大数据案例研究,由第11~16章组成,涉及自然语言处理、Twitter数据挖掘、IBM Watson和认知计算、机器学习、深度学习、大数据方面的内容。通过学习该部分,读者应掌握运用Python解决数据分析、人工智能相关问题的方法。

第11章 自然语言处理

第12章 Twitter数据挖掘

第13章IBM Watson和认知计算

第14章 机器学习:分类、回归和聚类

第15章 深度学习

第16章 大数据:Hadoop、Spark、NoSQL和loT


限于文章篇幅原因,就展示到这里了,有需要的小伙伴可以  点击这里获取!

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
相关文章
|
20天前
|
机器学习/深度学习 人工智能 算法
猫狗宠物识别系统Python+TensorFlow+人工智能+深度学习+卷积网络算法
宠物识别系统使用Python和TensorFlow搭建卷积神经网络,基于37种常见猫狗数据集训练高精度模型,并保存为h5格式。通过Django框架搭建Web平台,用户上传宠物图片即可识别其名称,提供便捷的宠物识别服务。
219 55
|
1月前
|
开发框架 数据建模 中间件
Python中的装饰器:简化代码,增强功能
在Python的世界里,装饰器是那些静悄悄的幕后英雄。它们不张扬,却能默默地为函数或类增添强大的功能。本文将带你了解装饰器的魅力所在,从基础概念到实际应用,我们一步步揭开装饰器的神秘面纱。准备好了吗?让我们开始这段简洁而富有启发性的旅程吧!
36 6
|
4天前
|
Python
课程设计项目之基于Python实现围棋游戏代码
游戏进去默认为九路玩法,当然也可以选择十三路或是十九路玩法 使用pycharam打开项目,pip安装模块并引用,然后运行即可, 代码每行都有详细的注释,可以做课程设计或者毕业设计项目参考
50 33
|
30天前
|
机器学习/深度学习 人工智能 算法
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
宠物识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了37种常见的猫狗宠物种类数据集【'阿比西尼亚猫(Abyssinian)', '孟加拉猫(Bengal)', '暹罗猫(Birman)', '孟买猫(Bombay)', '英国短毛猫(British Shorthair)', '埃及猫(Egyptian Mau)', '缅因猫(Maine Coon)', '波斯猫(Persian)', '布偶猫(Ragdoll)', '俄罗斯蓝猫(Russian Blue)', '暹罗猫(Siamese)', '斯芬克斯猫(Sphynx)', '美国斗牛犬
155 29
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
|
5天前
|
JavaScript API C#
【Azure Developer】Python代码调用Graph API将外部用户添加到组,结果无效,也无错误信息
根据Graph API文档,在单个请求中将多个成员添加到组时,Python代码示例中的`members@odata.bind`被错误写为`members@odata_bind`,导致用户未成功添加。
31 10
|
25天前
|
数据可视化 Python
以下是一些常用的图表类型及其Python代码示例,使用Matplotlib和Seaborn库。
通过这些思维导图和分析说明表,您可以更直观地理解和选择适合的数据可视化图表类型,帮助更有效地展示和分析数据。
64 8
|
1月前
|
API Python
【Azure Developer】分享一段Python代码调用Graph API创建用户的示例
分享一段Python代码调用Graph API创建用户的示例
51 11
|
30天前
|
Python
探索Python中的装饰器:简化代码,增强功能
在Python的世界里,装饰器就像是给函数穿上了一件神奇的外套,让它们拥有了超能力。本文将通过浅显易懂的语言和生动的比喻,带你了解装饰器的基本概念、使用方法以及它们如何让你的代码变得更加简洁高效。让我们一起揭开装饰器的神秘面纱,看看它是如何在不改变函数核心逻辑的情况下,为函数增添新功能的吧!
|
30天前
|
程序员 测试技术 数据安全/隐私保护
深入理解Python装饰器:提升代码重用与可读性
本文旨在为中高级Python开发者提供一份关于装饰器的深度解析。通过探讨装饰器的基本原理、类型以及在实际项目中的应用案例,帮助读者更好地理解并运用这一强大的语言特性。不同于常规摘要,本文将以一个实际的软件开发场景引入,逐步揭示装饰器如何优化代码结构,提高开发效率和代码质量。
48 6
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
探索未来编程:Python在人工智能领域的深度应用与前景###
本文将深入探讨Python语言在人工智能(AI)领域的广泛应用,从基础原理到前沿实践,揭示其如何成为推动AI技术创新的关键力量。通过分析Python的简洁性、灵活性以及丰富的库支持,展现其在机器学习、深度学习、自然语言处理等子领域的卓越贡献,并展望Python在未来AI发展中的核心地位与潜在变革。 ###