RNN、LSTM、GRU神经网络构建人名分类器(一)

简介: 这个文本描述了一个使用RNN(循环神经网络)、LSTM(长短期记忆网络)和GRU(门控循环单元)构建的人名分类器的案例。案例的主要目的是通过输入一个人名来预测它最可能属于哪个国家。这个任务在国际化的公司中很重要,因为可以自动为用户注册时提供相应的国家或地区选项。

RNN、LSTM、GRU神经网络构建人名分类器


案例介绍


关于人名分类问题:


以一个人名为输入, 使用模型帮助我们判断它最有可能是来自哪一个国家的人名, 这在某些国际化公司的业务中具有重要意义, 在用户注册过程中, 会根据用户填写的名字直接给他分配可能的国家或地区选项, 以及该国家或地区的国旗, 限制手机号码位数等等。


数据下载地址: https://download.pytorch.org/tutorial/data.zip


数据文件预览:


- data/
    - names/
        Arabic.txt
        Chinese.txt
        Czech.txt
        Dutch.txt
        English.txt
        French.txt
        German.txt
        Greek.txt
        Irish.txt
        Italian.txt
        Japanese.txt
        Korean.txt
        Polish.txt
        Portuguese.txt
        Russian.txt
        Scottish.txt
        Spanish.txt
        Vietnamese.txt


如Chiness.txt:


Ang
Au-Yong
Bai
Ban
Bao
Bei
Bian
Bui
Cai
Cao
Cen
Chai
Chaim
Chan
Chang
Chao
Che
Chen
Cheng


整个案例的实现可分为以下五个步骤


  • 导入必备的工具包
  • 对data文件中的数据进行处理,满足训练要求
  • 构建RNN模型(包括传统RNN, LSTM以及GRU).
  • 构建训练函数并进行训练
  • 构建评估函数并进行预测


导入必备的工具包


# 从io中导入文件打开方法
from io import open
# 帮助使用正则表达式进行子目录的查询
import glob
import os
# 用于获得常见字母及字符规范化
import string
import unicodedata
import random
import time
import math
import torch
import torch.nn as nn      
import matplotlib.pyplot as plt

数据预处理


需要对data文件中的数据进行处理,满足训练要求


1 获取常用的字符数量


# 获取所有常用字符包括字母和常用标点
all_letters = string.ascii_letters + " .,;'"
# 获取常用字符数量
n_letters = len(all_letters)
print("n_letter:", n_letters)


  • 输出: n_letter: 57


2 字符规范化之unicode转ascii函数


# 完成此功能如: Ślusàrski ---> Slusarski
def unicodeToAscii(s):
    return ''.join(
        c for c in unicodedata.normalize('NFD', s)
        if unicodedata.category(c) != 'Mn'
        and c in all_letters
    )


3 构建一个从文件中读取内容到内存的函数


data_path = "./data/names/"

def readLines(filename):
    """从文件中读取每一行加载到内存中形成列表"""
    # 打开指定文件读取内容, strip()去除两侧空白符,以'\n'进行切分
    lines = open(filename, encoding='utf-8').read().strip().split('\n')
    # 对应每一个lines列表中的名字进行Ascii转换, 使其规范化.最后返回一个名字列表
    return [unicodeToAscii(line) for line in lines]


调用测试一下:


# filename是数据集中某个具体的文件, 我们这里选择Chinese.txt
filename = data_path + "Chinese.txt"
lines = readLines(filename)
print(lines)


输出


lines: ['Ang', 'AuYong', 'Bai', 'Ban', 'Bao', 'Bei', 'Bian', 'Bui', 'Cai', 'Cao', 'Cen', 'Chai', 'Chaim', 'Chan', 'Chang', 'Chao', 'Che', 'Chen', 'Cheng', 'Cheung', 'Chew', 'Chieu', 'Chin', 'Chong', 'Chou', 'Chu', 'Cui', 'Dai', 'Deng', 'Ding', 'Dong', 'Dou', 'Duan', 'Eng', 'Fan', 'Fei', 'Feng', 'Foong', 'Fung', 'Gan', 'Gauk', 'Geng', 'Gim', 'Gok', 'Gong', 'Guan', 'Guang', 'Guo', 'Gwock', 'Han', 'Hang', 'Hao', 'Hew', 'Hiu', 'Hong', 'Hor', 'Hsiao', 'Hua', 'Huan', 'Huang', 'Hui', 'Huie', 'Huo', 'Jia', 'Jiang', 'Jin', 'Jing', 'Joe', 'Kang', 'Kau', 'Khoo', 'Khu', 'Kong', 'Koo', 'Kwan', 'Kwei', 'Kwong', 'Lai', 'Lam', 'Lang', 'Lau', 'Law', 'Lew', 'Lian', 'Liao', 'Lim', 'Lin', 'Ling', 'Liu', 'Loh', 'Long', 'Loong', 'Luo', 'Mah', 'Mai', 'Mak', 'Mao', 'Mar', 'Mei', 'Meng', 'Miao', 'Min', 'Ming', 'Moy', 'Mui', 'Nie', 'Niu', 'OuYang', 'OwYang', 'Pan', 'Pang', 'Pei', 'Peng', 'Ping', 'Qian', 'Qin', 'Qiu', 'Quan', 'Que', 'Ran', 'Rao', 'Rong', 'Ruan', 'Sam', 'Seah', 'See ', 'Seow', 'Seto', 'Sha', 'Shan', 'Shang', 'Shao', 'Shaw', 'She', 'Shen', 'Sheng', 'Shi', 'Shu', 'Shuai', 'Shui', 'Shum', 'Siew', 'Siu', 'Song', 'Sum', 'Sun', 'Sze ', 'Tan', 'Tang', 'Tao', 'Teng', 'Teoh', 'Thean', 'Thian', 'Thien', 'Tian', 'Tong', 'Tow', 'Tsang', 'Tse', 'Tsen', 'Tso', 'Tze', 'Wan', 'Wang', 'Wei', 'Wen', 'Weng', 'Won', 'Wong', 'Woo', 'Xiang', 'Xiao', 'Xie', 'Xing', 'Xue', 'Xun', 'Yan', 'Yang', 'Yao', 'Yap', 'Yau', 'Yee', 'Yep', 'Yim', 'Yin', 'Ying', 'Yong', 'You', 'Yuan', 'Zang', 'Zeng', 'Zha', 'Zhan', 'Zhang', 'Zhao', 'Zhen', 'Zheng', 'Zhong', 'Zhou', 'Zhu', 'Zhuo', 'Zong', 'Zou', 'Bing', 'Chi', 'Chu', 'Cong', 'Cuan', 'Dan', 'Fei', 'Feng', 'Gai', 'Gao', 'Gou', 'Guan', 'Gui', 'Guo', 'Hong', 'Hou', 'Huan', 'Jian', 'Jiao', 'Jin', 'Jiu', 'Juan', 'Jue', 'Kan', 'Kuai', 'Kuang', 'Kui', 'Lao', 'Liang', 'Lu', 'Luo', 'Man', 'Nao', 'Pian', 'Qiao', 'Qing', 'Qiu', 'Rang', 'Rui', 'She', 'Shi', 'Shuo', 'Sui', 'Tai', 'Wan', 'Wei', 'Xian', 'Xie', 'Xin', 'Xing', 'Xiong', 'Xuan', 'Yan', 'Yin', 'Ying', 'Yuan', 'Yue', 'Yun', 'Zha', 'Zhai', 'Zhang', 'Zhi', 'Zhuan', 'Zhui']
4 构建人名类别(所属的语言)列表与人名对应关系字典


# 构建的category_lines形如:{"English":["Lily", "Susan", "Kobe"], "Chinese":["Zhang San", "Xiao Ming"]}
category_lines = {}

# all_categories形如: ["English",...,"Chinese"]
all_categories = []

# 读取指定路径下的txt文件, 使用glob,path中可以使用正则表达式
for filename in glob.glob(data_path + '*.txt'):
    # 获取每个文件的文件名, 就是对应的名字类别
    category = os.path.splitext(os.path.basename(filename))[0]
    # 将其逐一装到all_categories列表中
    all_categories.append(category)
    # 然后读取每个文件的内容,形成名字列表
    lines = readLines(filename)
    # 按照对应的类别,将名字列表写入到category_lines字典中
    category_lines[category] = lines


# 查看类别总数
n_categories = len(all_categories)
print("n_categories:", n_categories)

# 随便查看其中的一些内容
print(category_lines['Italian'][:5])


输出:


n_categories: 18
['Abandonato', 'Abatangelo', 'Abatantuono', 'Abate', 'Abategiovanni']


5 将人名转化为对应onehot张量表示


def lineToTensor(line):
    """将人名转化为对应onehot张量表示, 参数line是输入的人名"""
    # 首先初始化一个0张量, 它的形状(len(line), 1, n_letters) 
    # 代表人名中的每个字母用一个1 x n_letters的张量表示.
    tensor = torch.zeros(len(line), 1, n_letters)
    # 遍历这个人名中的每个字符索引和字符
    for li, letter in enumerate(line):
        # 使用字符串方法find找到每个字符在all_letters中的索引
        # 它也是我们生成onehot张量中1的索引位置
        tensor[li][0][all_letters.find(letter)] = 1
    # 返回结果
    return tensor


 onehot编码举例:


猫(cat): [1, 0, 0]
狗(dog): [0, 1, 0] (表示“狗”的向量)
鸟(bird): [0, 0, 1]


到现在先测试一下,然后再继续运行:


line = "Bai"
line_tensor = lineToTensor(line)
print("line_tensot:", line_tensor)


line_tensot: tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
          0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0.,
          0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
          0., 0., 0., 0., 0., 0.]],

        [[1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
          0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
          0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
          0., 0., 0., 0., 0., 0.]],

        [[0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0.,
          0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
          0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
          0., 0., 0., 0., 0., 0.]]])



RNN、LSTM、GRU神经网络构建人名分类器(二)+https://developer.aliyun.com/article/1544721?spm=a2c6h.13148508.setting.17.2a1e4f0eMtMqGK

目录
打赏
0
3
4
0
50
分享
相关文章
基于GRU网络的MQAM调制信号检测算法matlab仿真,对比LSTM
本研究基于MATLAB 2022a,使用GRU网络对QAM调制信号进行检测。QAM是一种高效调制技术,广泛应用于现代通信系统。传统方法在复杂环境下性能下降,而GRU通过门控机制有效提取时间序列特征,实现16QAM、32QAM、64QAM、128QAM的准确检测。仿真结果显示,GRU在低SNR下表现优异,且训练速度快,参数少。核心程序包括模型预测、误检率和漏检率计算,并绘制准确率图。
157 65
基于GRU网络的MQAM调制信号检测算法matlab仿真,对比LSTM
时间序列预测新突破:深入解析循环神经网络(RNN)在金融数据分析中的应用
【10月更文挑战第7天】时间序列预测是数据科学领域的一个重要课题,特别是在金融行业中。准确的时间序列预测能够帮助投资者做出更明智的决策,比如股票价格预测、汇率变动预测等。近年来,随着深度学习技术的发展,尤其是循环神经网络(Recurrent Neural Networks, RNNs)及其变体如长短期记忆网络(LSTM)和门控循环单元(GRU),在处理时间序列数据方面展现出了巨大的潜力。本文将探讨RNN的基本概念,并通过具体的代码示例展示如何使用这些模型来进行金融数据分析。
986 2
前端神经网络入门:Brain.js - 详细介绍和对比不同的实现 - CNN、RNN、DNN、FFNN -无需准备环境打开浏览器即可测试运行-支持WebGPU加速
本文介绍了如何使用 JavaScript 神经网络库 **Brain.js** 实现不同类型的神经网络,包括前馈神经网络(FFNN)、深度神经网络(DNN)和循环神经网络(RNN)。通过简单的示例和代码,帮助前端开发者快速入门并理解神经网络的基本概念。文章还对比了各类神经网络的特点和适用场景,并简要介绍了卷积神经网络(CNN)的替代方案。
1180 1
深度学习入门:循环神经网络------RNN概述,词嵌入层,循环网络层及案例实践!(万字详解!)
深度学习入门:循环神经网络------RNN概述,词嵌入层,循环网络层及案例实践!(万字详解!)
【NLP自然语言处理】基于PyTorch深度学习框架构建RNN经典案例:构建人名分类器
【NLP自然语言处理】基于PyTorch深度学习框架构建RNN经典案例:构建人名分类器
Uno Platform多语言开发秘籍大公开:轻松驾驭全球用户,一键切换语言,让你的应用成为跨文化交流的桥梁!
【8月更文挑战第31天】Uno Platform 是一个强大的开源框架,允许使用 C# 和 XAML 构建跨平台的原生移动、Web 和桌面应用程序。本文详细介绍如何通过 Uno Platform 创建多语言应用,包括准备工作、设置多语言资源、XAML 中引用资源、C# 中加载资源以及处理语言更改。通过简单的步骤和示例代码,帮助开发者轻松实现应用的国际化。
112 1
图神经网络是一类用于处理图结构数据的神经网络。与传统的深度学习模型(如卷积神经网络CNN和循环神经网络RNN)不同,
图神经网络是一类用于处理图结构数据的神经网络。与传统的深度学习模型(如卷积神经网络CNN和循环神经网络RNN)不同,
|
10月前
网络分类器 cgroup 【ChatGPT】
网络分类器 cgroup 【ChatGPT】
你的Wicket应用安全吗?揭秘在Apache Wicket中实现坚不可摧的安全认证策略
【8月更文挑战第31天】在当前的网络环境中,安全性是任何应用程序的关键考量。Apache Wicket 是一个强大的 Java Web 框架,提供了丰富的工具和组件,帮助开发者构建安全的 Web 应用程序。本文介绍了如何在 Wicket 中实现安全认证,
127 0
TensorFlow 中的循环神经网络超厉害!从理论到实践详解,带你领略 RNN 的强大魅力!
【8月更文挑战第31天】循环神经网络(RNN)在人工智能领域扮演着重要角色,尤其在TensorFlow框架下处理序列数据时展现出强大功能。RNN具有记忆能力,能捕捉序列中的长期依赖关系,适用于自然语言处理、机器翻译和语音识别等多个领域。尽管存在长期依赖和梯度消失等问题,但通过LSTM和GRU等改进结构可以有效解决。在TensorFlow中实现RNN十分简便,为处理复杂序列数据提供了有力支持。
90 0

热门文章

最新文章

AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等