RNN、LSTM、GRU神经网络构建人名分类器(一)

简介: 这个文本描述了一个使用RNN(循环神经网络)、LSTM(长短期记忆网络)和GRU(门控循环单元)构建的人名分类器的案例。案例的主要目的是通过输入一个人名来预测它最可能属于哪个国家。这个任务在国际化的公司中很重要,因为可以自动为用户注册时提供相应的国家或地区选项。

RNN、LSTM、GRU神经网络构建人名分类器


案例介绍


关于人名分类问题:


以一个人名为输入, 使用模型帮助我们判断它最有可能是来自哪一个国家的人名, 这在某些国际化公司的业务中具有重要意义, 在用户注册过程中, 会根据用户填写的名字直接给他分配可能的国家或地区选项, 以及该国家或地区的国旗, 限制手机号码位数等等。


数据下载地址: https://download.pytorch.org/tutorial/data.zip


数据文件预览:


- data/
    - names/
        Arabic.txt
        Chinese.txt
        Czech.txt
        Dutch.txt
        English.txt
        French.txt
        German.txt
        Greek.txt
        Irish.txt
        Italian.txt
        Japanese.txt
        Korean.txt
        Polish.txt
        Portuguese.txt
        Russian.txt
        Scottish.txt
        Spanish.txt
        Vietnamese.txt


如Chiness.txt:


Ang
Au-Yong
Bai
Ban
Bao
Bei
Bian
Bui
Cai
Cao
Cen
Chai
Chaim
Chan
Chang
Chao
Che
Chen
Cheng


整个案例的实现可分为以下五个步骤


  • 导入必备的工具包
  • 对data文件中的数据进行处理,满足训练要求
  • 构建RNN模型(包括传统RNN, LSTM以及GRU).
  • 构建训练函数并进行训练
  • 构建评估函数并进行预测


导入必备的工具包


# 从io中导入文件打开方法
from io import open
# 帮助使用正则表达式进行子目录的查询
import glob
import os
# 用于获得常见字母及字符规范化
import string
import unicodedata
import random
import time
import math
import torch
import torch.nn as nn      
import matplotlib.pyplot as plt

数据预处理


需要对data文件中的数据进行处理,满足训练要求


1 获取常用的字符数量


# 获取所有常用字符包括字母和常用标点
all_letters = string.ascii_letters + " .,;'"
# 获取常用字符数量
n_letters = len(all_letters)
print("n_letter:", n_letters)


  • 输出: n_letter: 57


2 字符规范化之unicode转ascii函数


# 完成此功能如: Ślusàrski ---> Slusarski
def unicodeToAscii(s):
    return ''.join(
        c for c in unicodedata.normalize('NFD', s)
        if unicodedata.category(c) != 'Mn'
        and c in all_letters
    )


3 构建一个从文件中读取内容到内存的函数


data_path = "./data/names/"

def readLines(filename):
    """从文件中读取每一行加载到内存中形成列表"""
    # 打开指定文件读取内容, strip()去除两侧空白符,以'\n'进行切分
    lines = open(filename, encoding='utf-8').read().strip().split('\n')
    # 对应每一个lines列表中的名字进行Ascii转换, 使其规范化.最后返回一个名字列表
    return [unicodeToAscii(line) for line in lines]


调用测试一下:


# filename是数据集中某个具体的文件, 我们这里选择Chinese.txt
filename = data_path + "Chinese.txt"
lines = readLines(filename)
print(lines)


输出


lines: ['Ang', 'AuYong', 'Bai', 'Ban', 'Bao', 'Bei', 'Bian', 'Bui', 'Cai', 'Cao', 'Cen', 'Chai', 'Chaim', 'Chan', 'Chang', 'Chao', 'Che', 'Chen', 'Cheng', 'Cheung', 'Chew', 'Chieu', 'Chin', 'Chong', 'Chou', 'Chu', 'Cui', 'Dai', 'Deng', 'Ding', 'Dong', 'Dou', 'Duan', 'Eng', 'Fan', 'Fei', 'Feng', 'Foong', 'Fung', 'Gan', 'Gauk', 'Geng', 'Gim', 'Gok', 'Gong', 'Guan', 'Guang', 'Guo', 'Gwock', 'Han', 'Hang', 'Hao', 'Hew', 'Hiu', 'Hong', 'Hor', 'Hsiao', 'Hua', 'Huan', 'Huang', 'Hui', 'Huie', 'Huo', 'Jia', 'Jiang', 'Jin', 'Jing', 'Joe', 'Kang', 'Kau', 'Khoo', 'Khu', 'Kong', 'Koo', 'Kwan', 'Kwei', 'Kwong', 'Lai', 'Lam', 'Lang', 'Lau', 'Law', 'Lew', 'Lian', 'Liao', 'Lim', 'Lin', 'Ling', 'Liu', 'Loh', 'Long', 'Loong', 'Luo', 'Mah', 'Mai', 'Mak', 'Mao', 'Mar', 'Mei', 'Meng', 'Miao', 'Min', 'Ming', 'Moy', 'Mui', 'Nie', 'Niu', 'OuYang', 'OwYang', 'Pan', 'Pang', 'Pei', 'Peng', 'Ping', 'Qian', 'Qin', 'Qiu', 'Quan', 'Que', 'Ran', 'Rao', 'Rong', 'Ruan', 'Sam', 'Seah', 'See ', 'Seow', 'Seto', 'Sha', 'Shan', 'Shang', 'Shao', 'Shaw', 'She', 'Shen', 'Sheng', 'Shi', 'Shu', 'Shuai', 'Shui', 'Shum', 'Siew', 'Siu', 'Song', 'Sum', 'Sun', 'Sze ', 'Tan', 'Tang', 'Tao', 'Teng', 'Teoh', 'Thean', 'Thian', 'Thien', 'Tian', 'Tong', 'Tow', 'Tsang', 'Tse', 'Tsen', 'Tso', 'Tze', 'Wan', 'Wang', 'Wei', 'Wen', 'Weng', 'Won', 'Wong', 'Woo', 'Xiang', 'Xiao', 'Xie', 'Xing', 'Xue', 'Xun', 'Yan', 'Yang', 'Yao', 'Yap', 'Yau', 'Yee', 'Yep', 'Yim', 'Yin', 'Ying', 'Yong', 'You', 'Yuan', 'Zang', 'Zeng', 'Zha', 'Zhan', 'Zhang', 'Zhao', 'Zhen', 'Zheng', 'Zhong', 'Zhou', 'Zhu', 'Zhuo', 'Zong', 'Zou', 'Bing', 'Chi', 'Chu', 'Cong', 'Cuan', 'Dan', 'Fei', 'Feng', 'Gai', 'Gao', 'Gou', 'Guan', 'Gui', 'Guo', 'Hong', 'Hou', 'Huan', 'Jian', 'Jiao', 'Jin', 'Jiu', 'Juan', 'Jue', 'Kan', 'Kuai', 'Kuang', 'Kui', 'Lao', 'Liang', 'Lu', 'Luo', 'Man', 'Nao', 'Pian', 'Qiao', 'Qing', 'Qiu', 'Rang', 'Rui', 'She', 'Shi', 'Shuo', 'Sui', 'Tai', 'Wan', 'Wei', 'Xian', 'Xie', 'Xin', 'Xing', 'Xiong', 'Xuan', 'Yan', 'Yin', 'Ying', 'Yuan', 'Yue', 'Yun', 'Zha', 'Zhai', 'Zhang', 'Zhi', 'Zhuan', 'Zhui']
4 构建人名类别(所属的语言)列表与人名对应关系字典


# 构建的category_lines形如:{"English":["Lily", "Susan", "Kobe"], "Chinese":["Zhang San", "Xiao Ming"]}
category_lines = {}

# all_categories形如: ["English",...,"Chinese"]
all_categories = []

# 读取指定路径下的txt文件, 使用glob,path中可以使用正则表达式
for filename in glob.glob(data_path + '*.txt'):
    # 获取每个文件的文件名, 就是对应的名字类别
    category = os.path.splitext(os.path.basename(filename))[0]
    # 将其逐一装到all_categories列表中
    all_categories.append(category)
    # 然后读取每个文件的内容,形成名字列表
    lines = readLines(filename)
    # 按照对应的类别,将名字列表写入到category_lines字典中
    category_lines[category] = lines


# 查看类别总数
n_categories = len(all_categories)
print("n_categories:", n_categories)

# 随便查看其中的一些内容
print(category_lines['Italian'][:5])


输出:


n_categories: 18
['Abandonato', 'Abatangelo', 'Abatantuono', 'Abate', 'Abategiovanni']


5 将人名转化为对应onehot张量表示


def lineToTensor(line):
    """将人名转化为对应onehot张量表示, 参数line是输入的人名"""
    # 首先初始化一个0张量, 它的形状(len(line), 1, n_letters) 
    # 代表人名中的每个字母用一个1 x n_letters的张量表示.
    tensor = torch.zeros(len(line), 1, n_letters)
    # 遍历这个人名中的每个字符索引和字符
    for li, letter in enumerate(line):
        # 使用字符串方法find找到每个字符在all_letters中的索引
        # 它也是我们生成onehot张量中1的索引位置
        tensor[li][0][all_letters.find(letter)] = 1
    # 返回结果
    return tensor


 onehot编码举例:


猫(cat): [1, 0, 0]
狗(dog): [0, 1, 0] (表示“狗”的向量)
鸟(bird): [0, 0, 1]


到现在先测试一下,然后再继续运行:


line = "Bai"
line_tensor = lineToTensor(line)
print("line_tensot:", line_tensor)


line_tensot: tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
          0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0.,
          0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
          0., 0., 0., 0., 0., 0.]],

        [[1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
          0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
          0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
          0., 0., 0., 0., 0., 0.]],

        [[0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0.,
          0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
          0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
          0., 0., 0., 0., 0., 0.]]])



RNN、LSTM、GRU神经网络构建人名分类器(二)+https://developer.aliyun.com/article/1544721?spm=a2c6h.13148508.setting.17.2a1e4f0eMtMqGK

相关文章
|
6月前
|
机器学习/深度学习 算法 安全
【PSO-LSTM】基于PSO优化LSTM网络的电力负荷预测(Python代码实现)
【PSO-LSTM】基于PSO优化LSTM网络的电力负荷预测(Python代码实现)
330 0
|
8月前
|
机器学习/深度学习 算法 数据挖掘
基于WOA鲸鱼优化的BiLSTM双向长短期记忆网络序列预测算法matlab仿真,对比BiLSTM和LSTM
本项目基于MATLAB 2022a/2024b实现,采用WOA优化的BiLSTM算法进行序列预测。核心代码包含完整中文注释与操作视频,展示从参数优化到模型训练、预测的全流程。BiLSTM通过前向与后向LSTM结合,有效捕捉序列前后文信息,解决传统RNN梯度消失问题。WOA优化超参数(如学习率、隐藏层神经元数),提升模型性能,避免局部最优解。附有运行效果图预览,最终输出预测值与实际值对比,RMSE评估精度。适合研究时序数据分析与深度学习优化的开发者参考。
|
8月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于GA遗传优化的BiLSTM双向长短期记忆网络序列预测算法matlab仿真,对比BiLSTM和LSTM
本内容包含基于BiLSTM与遗传算法(GA)的算法介绍及实现。算法通过MATLAB2022a/2024b运行,核心为优化BiLSTM超参数(如学习率、神经元数量),提升预测性能。LSTM解决传统RNN梯度问题,捕捉长期依赖;BiLSTM双向处理序列,融合前文后文信息,适合全局信息任务。附完整代码(含注释)、操作视频及无水印运行效果预览,适用于股票预测等场景,精度优于单向LSTM。
|
4月前
|
机器学习/深度学习 自然语言处理 PyTorch
21_RNN与LSTM:序列建模的经典方法
在自然语言处理领域,处理序列数据是一个核心挑战。传统的机器学习方法难以捕捉序列中的时序依赖关系,而循环神经网络(Recurrent Neural Network,RNN)及其变种长短期记忆网络(Long Short-Term Memory,LSTM)通过其独特的循环结构,为序列建模提供了强大的解决方案。本教程将深入探讨RNN和LSTM的原理、实现方法和最新应用,帮助读者全面掌握这一NLP核心技术。
|
8月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于PSO粒子群优化TCN-LSTM时间卷积神经网络时间序列预测算法matlab仿真
本内容展示了一种基于粒子群优化(PSO)与时间卷积神经网络(TCN)的时间序列预测方法。通过 MATLAB2022a 实现,完整程序运行无水印,核心代码附详细中文注释及操作视频。算法利用 PSO 优化 TCN 的超参数(如卷积核大小、层数等),提升非线性时间序列预测性能。TCN 结构包含因果卷积层与残差连接,结合 LSTM 构建混合模型,经多次迭代选择最优超参数,最终实现更准确可靠的预测效果,适用于金融、气象等领域。
|
5月前
|
机器学习/深度学习 数据采集 资源调度
基于长短期记忆网络定向改进预测的动态多目标进化算法(LSTM-DIP-DMOEA)求解CEC2018(DF1-DF14)研究(Matlab代码实现)
基于长短期记忆网络定向改进预测的动态多目标进化算法(LSTM-DIP-DMOEA)求解CEC2018(DF1-DF14)研究(Matlab代码实现)
147 0
|
5月前
|
机器学习/深度学习 传感器 数据采集
基于贝叶斯优化CNN-LSTM混合神经网络预测(Matlab代码实现)
基于贝叶斯优化CNN-LSTM混合神经网络预测(Matlab代码实现)
867 0
|
8月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于PSO粒子群优化的BiLSTM双向长短期记忆网络序列预测算法matlab仿真,对比BiLSTM和LSTM
本项目基于MATLAB2022a/2024b开发,结合粒子群优化(PSO)算法与双向长短期记忆网络(BiLSTM),用于优化序列预测任务中的模型参数。核心代码包含详细中文注释及操作视频,涵盖遗传算法优化过程、BiLSTM网络构建、训练及预测分析。通过PSO优化BiLSTM的超参数(如学习率、隐藏层神经元数等),显著提升模型捕捉长期依赖关系和上下文信息的能力,适用于气象、交通流量等场景。附有运行效果图预览,展示适应度值、RMSE变化及预测结果对比,验证方法有效性。
|
8月前
|
机器学习/深度学习 数据采集 算法
基于GWO灰狼优化的BiLSTM双向长短期记忆网络序列预测算法matlab仿真,对比BiLSTM和LSTM
本项目基于Matlab 2022a/2024b实现,结合灰狼优化(GWO)算法与双向长短期记忆网络(BiLSTM),用于序列预测任务。核心代码包含数据预处理、种群初始化、适应度计算及参数优化等步骤,完整版附带中文注释与操作视频。BiLSTM通过前向与后向处理捕捉序列上下文信息,GWO优化其参数以提升预测性能。效果图展示训练过程与预测结果,适用于气象、交通等领域。LSTM结构含输入门、遗忘门与输出门,解决传统RNN梯度问题,而BiLSTM进一步增强上下文理解能力。
|
11月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于GA遗传优化TCN-LSTM时间卷积神经网络时间序列预测算法matlab仿真
本项目基于MATLAB 2022a实现了一种结合遗传算法(GA)优化的时间卷积神经网络(TCN)时间序列预测算法。通过GA全局搜索能力优化TCN超参数(如卷积核大小、层数等),显著提升模型性能,优于传统GA遗传优化TCN方法。项目提供完整代码(含详细中文注释)及操作视频,运行后无水印效果预览。 核心内容包括:1) 时间序列预测理论概述;2) TCN结构(因果卷积层与残差连接);3) GA优化流程(染色体编码、适应度评估等)。最终模型在金融、气象等领域具备广泛应用价值,可实现更精准可靠的预测结果。

热门文章

最新文章