AI - 决策树模型

简介: 决策树算法起源于古希腊的逻辑推理,20世纪在军事策略研究中首次提出。它通过构建树形模型模拟决策过程,每个节点代表一个属性判断,分支代表可能结果。ID3算法基于信息增益,C4.5则引入信息增益率,解决了ID3偏好多值属性的问题,还能处理缺失值。CART决策树适用于分类和回归任务,使用基尼系数或信息增益来选择特征。在Python的`sklearn`库中,`DecisionTreeClassifier`实现决策树分类,通过参数如`criterion`、`max_depth`等控制模型。

🤔决策树算法


决策树的思想来源可以追溯到古希腊时期,当时的哲学家们就已经开始使用类似于决策树的图形来表示逻辑推理过程。然而,决策树作为一种科学的决策分析工具,其发展主要发生在20世纪。


在20世纪50年代,美国兰德公司的研究人员在研究军事策略时首次提出了决策树的概念。他们使用决策树来分析和比较不同的军事策略,以帮助决策者做出最佳选择。


决策树的基本思想是,通过构建一个树状的图形模型,将决策过程中的各种可能情况和结果以直观的方式展现出来。每一个节点代表一个决策或事件,每一个分支代表一个可能的结果,而树的每一个路径则代表一种可能的决策序列。这种思想的朴素之处在于,它直接模仿了人类在日常生活中做决策的过程。人们在面对一个复杂的问题时,往往会将其分解为一系列的小问题,然后逐个解决。当选择一个餐厅时,可能会考虑菜品的口味、价格区间、餐厅的位置等因素。这些因素可以构成一个决策树,其中每个因素是决策节点,每个选择是方案枝,最终到达叶子节点,即做出决策。


决策树的思想虽然朴素,但它却能够处理非常复杂的决策问题,因此被广泛应用于经济学、管理学、计算机科学等多个领域。


🔎sklearn实现决策树分类


鸢尾花数据绘制图像


from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier
from sklearn.metrics import accuracy_score
from sklearn import tree
import matplotlib.pyplot as plt
 
# 加载鸢尾花数据集
iris = datasets.load_iris()
X = iris.data
y = iris.target
 
# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
 
# 创建决策树分类器
clf = DecisionTreeClassifier()
 
# 训练模型
clf.fit(X_train, y_train)
 
# 预测测试集
y_pred = clf.predict(X_test)
 
# 计算准确率
accuracy = accuracy_score(y_test, y_pred)
print("准确率:", accuracy)
 
# 绘制决策树图像
fig, ax = plt.subplots(figsize=(12, 12))
tree.plot_tree(clf, filled=True, feature_names=iris.feature_names, class_names=iris.target_names, ax=ax)
plt.show()


构建决策树包括三个:


  • 特征选择:选取有较强分类能力的特征
  • 决策树生成
  • 决策树剪枝


🔎ID3 决策树


ID3 树是基于信息增益构建的决策树,算法的核心在于使用信息增益作为属性选择的标准,即在每个节点选择尚未被用来划分的、具有最高信息增益的属性作为划分标准。通过这种方式,算法递归地构建决策树,直到所有的训练样本都能被完美分类。


  • 计算信息熵:首先需要了解信息熵的概念,它衡量的是数据集中的不确定性或混乱程度。信息熵的计算公式为 Entropy = -∑(p(xi) * log2(p(xi))),其中 p(xi) 是第 i 类样本出现的概率。
  • 熵越大,数据的不确定性度越高
  • 熵越小,数据的不确定性越低


假如有三个类别,分别占比为:{⅓,⅓,⅓},信息熵计算结果 1.0986;


若分别占比为:{1/10,2/10,7/10},信息熵计算结果为 0.8018。


import numpy as np
import matplotlib.pyplot as plt
 
def entropy(p):
    return -p*np.log(p)-(1-p)*np.log(1-p)
 
x = np.linspace(0.01,0.99,200)
plt.plot(x,entropy(x))
plt.show()



当我们的系统每一个类别是等概率的时候,系统的信息熵最高,直到系统整体百分之百的都到某一类中,此时信息熵就达到了最低值。


条件熵用于衡量以某个特征作为条件,对目标值纯度的提升程度。


💡信息增益


信息增益反映了在一个条件下,信息的不确定性减少了多少。它是通过计算信息熵和条件熵的差值得出的。条件熵是在已知某个条件或属性的情况下,数据集的不确定性。它通常用于衡量在给定某个属性的条件下,目标变量的不确定性。信息增益差值越大,说明该属性对于分类的贡献越大,因此在构建决策树时,我们倾向于选择信息增益大的属性作为节点的划分依据。


🔎C4.5 决策树


C4.5决策树算法是ID3算法的改进版本,它使用信息增益率来选择划分特征


C4.5算法在构建决策树时采用了与ID3算法相似的自顶向下的贪婪搜索策略,但它在以下几个方面进行了重要的改进和优化:


  • 信息增益率:C4.5算法使用信息增益率而非信息增益来选择划分特征。信息增益率是信息增益与分裂信息(split information)的比值,这种方法克服了ID3算法中信息增益倾向于选择取值较多的属性的不足。
  • 处理连续属性:C4.5算法能够处理离散型和连续型的属性。对于连续型属性,算法会进行离散化处理,将其转换为可以用于决策树的离散值。
  • 剪枝操作:在构造决策树之后,C4.5算法会进行剪枝操作,以减少模型的过拟合风险,提高模型的泛化能力。
  • 处理缺失值:C4.5算法能够处理具有缺失属性值的训练数据,这使得算法更加健壮和适用于现实世界的数据。
  • 数据:C4.5算法可以处理离散型描述属性,也可以处理连续数值型属性



🔎CART 分类决策树


CART,全称为Classification and Regression Tree,即分类回归树,是一种非常灵活且功能强大的机器学习算法。它与之前的ID3和C4.5算法不同,CART能够处理连续型数据的分类以及回归任务。CART生成的是二叉树,这意味着在每个非叶节点上只会有两个分支。这样的结构有助于简化模型,提高解释性。CART使用基尼系数作为特征选择的标准。基尼系数衡量的是数据集的不纯度,基尼系数越小,表示数据越纯,即分类越明确。这与信息增益(率)的概念相反,后者是在ID3和C4.5中使用的。


基尼指数值越小(cart),则说明优先选择该特征。假设有一个包含两个类别的数据集,其中类别A有10个样本,类别B有20个样本。我们可以使用以下公式计算基尼指数:



其中,pi是第i个类别在数据集中出现的概率,m是类别的数量。在这个例子中,m=2 ,因此:Gini=1−(10/30)2−(20/30)2=0.475


这意味着这个数据集的基尼指数为0.475,表示数据集的不纯度较高,基尼指数只适用于二分类问题,对于多分类问题需要使用其他指标,如信息增益、信息增益率等。


🔎Cart分类树原理


如果目标变量是离散变量,则是classfication Tree分类树。决策树算法对训练集很容易过拟合,导致泛化能力很差,为解决此问题,需要对CART树进行剪枝。CART剪枝算法从“完全生长”的决策树的底端剪去一些子树,使决策树变小,从而能够对未知数据有更准确的预测,也就是说CART使用的是后剪枝法。一般分为两步:先生成决策树,产生所有可能的剪枝后的CART树,然后使用交叉验证来检验各种剪枝的效果,最后选择泛化能力好的剪枝策略。



💎 决策树算法sklearn总结


在sklearn中,决策树算法主要通过DecisionTreeClassifier类实现。DecisionTreeClassifier类的构造方法接受多个参数,用于控制决策树的构建过程和行为。


  • criterion:用于特征选择的准则,可选"gini"(基尼系数)或"entropy"(信息增益)。
  • splitter:用于节点划分的策略,可选"best"(最优划分)或"random"(随机划分)。
  • max_depth:决策树的最大深度,用于防止过拟合。
  • min_samples_split:内部节点再划分所需最小样本数。
  • min_samples_leaf:叶节点所需的最小样本数。
  • class_weight:类别权重,用于处理不平衡数据集。


训练方法:使用fit方法来训练决策树模型,传入训练数据和对应的标签。


from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier
 
# 加载数据集
iris = load_iris()
X_train, X_test, y_train, y_test = train_test_split(iris.data, iris.target, test_size=0.3, random_state=42)
 
# 创建决策树分类器实例
clf = DecisionTreeClassifier(criterion="gini", max_depth=4)
 
# 训练模型
clf.fit(X_train, y_train)


预测方法:使用predict方法进行预测,输入待预测的数据,输出预测结果。


y_pred = clf.predict(X_test)


评估方法:可以使用score方法来评估模型的准确性。


# 计算准确率
accuracy = clf.score(X_test, y_test)


sklearn中的决策树算法提供了一个灵活且易于使用的机器学习模型,适用于各种分类问题。通过调整不同的参数和选择合适的特征选择准则,可以有效地控制决策树的行为和性能。

相关文章
|
4月前
|
云安全 人工智能 自然语言处理
阿里云x硅基流动:AI安全护栏助力构建可信模型生态
阿里云AI安全护栏:大模型的“智能过滤系统”。
2052 120
|
4月前
|
人工智能 搜索推荐 程序员
当AI学会“跨界思考”:多模态模型如何重塑人工智能
当AI学会“跨界思考”:多模态模型如何重塑人工智能
430 120
|
5月前
|
机器学习/深度学习 人工智能 资源调度
智能家居环境中的AI决策解释:实现以人为中心的可解释性——论文阅读
本文探讨智能家居中AI决策的可解释性,提出以人为中心的XAI框架。通过SHAP、DeepLIFT等技术提升模型透明度,结合用户认知与需求,构建三层解释体系,增强信任与交互效能。
393 19
智能家居环境中的AI决策解释:实现以人为中心的可解释性——论文阅读
|
5月前
|
机器学习/深度学习 人工智能 自然语言处理
AI Compass前沿速览:Qwen3-Max、Mixboard、Qwen3-VL、Audio2Face、Vidu Q2 AI视频生成模型、Qwen3-LiveTranslate-全模态同传大模型
AI Compass前沿速览:Qwen3-Max、Mixboard、Qwen3-VL、Audio2Face、Vidu Q2 AI视频生成模型、Qwen3-LiveTranslate-全模态同传大模型
840 13
AI Compass前沿速览:Qwen3-Max、Mixboard、Qwen3-VL、Audio2Face、Vidu Q2 AI视频生成模型、Qwen3-LiveTranslate-全模态同传大模型
|
5月前
|
人工智能 负载均衡 API
Vercel 发布 AI Gateway 神器!可一键访问数百个模型,助力零门槛开发 AI 应用
大家好,我是Immerse,独立开发者、AGI实践者。分享编程、AI干货、开源项目与个人思考。关注公众号“沉浸式趣谈”,获取独家内容。Vercel新推出的AI Gateway,统一多模型API,支持自动切换、负载均衡与零加价调用,让AI开发更高效稳定。一行代码切换模型,告别接口烦恼!
631 1
Vercel 发布 AI Gateway 神器!可一键访问数百个模型,助力零门槛开发 AI 应用
|
4月前
|
存储 人工智能 前端开发
超越问答:深入理解并构建自主决策的AI智能体(Agent)
如果说RAG让LLM学会了“开卷考试”,那么AI智能体(Agent)则赋予了LLM“手和脚”,使其能够思考、规划并与真实世界互动。本文将深入剖析Agent的核心架构,讲解ReAct等关键工作机制,并带你一步步构建一个能够调用外部工具(API)的自定义Agent,开启LLM自主解决复杂任务的新篇章。
848 6
|
4月前
|
人工智能 监控 Java
Java与AI智能体:构建自主决策与工具调用的智能系统
随着AI智能体技术的快速发展,构建能够自主理解任务、制定计划并执行复杂操作的智能系统已成为新的技术前沿。本文深入探讨如何在Java生态中构建具备工具调用、记忆管理和自主决策能力的AI智能体系统。我们将完整展示从智能体架构设计、工具生态系统、记忆机制到多智能体协作的全流程,为Java开发者提供构建下一代自主智能系统的完整技术方案。
652 4
|
4月前
|
机器学习/深度学习 人工智能 监控
拔俗AI智能营运分析助手软件系统:企业决策的"数据军师",让经营从"拍脑袋"变"精准导航"
AI智能营运分析助手打破数据孤岛,实时整合ERP、CRM等系统数据,自动生成报表、智能预警与可视化决策建议,助力企业从“经验驱动”迈向“数据驱动”,提升决策效率,降低运营成本,精准把握市场先机。(238字)
168 0