机器学习聚类算法

简介: 聚类算法是无监督学习技术,用于发现数据集中的自然群体,如用户画像、广告推荐等。常见的聚类算法包括K-Means,它基于距离分配样本至簇,适合球形分布;层次聚类则通过合并或分裂形成簇,能发现任意形状的簇;DBSCAN依据密度来聚类,对噪声鲁棒。KMeans API中`sklearn.cluster.KMeans(n_clusters=8)`用于指定簇的数量。评估聚类效果可使用轮廓系数、SSE等指标,Elbow方法帮助选择合适的K值。

聚类算法是一种无监督学习方法,用于将数据集中的样本划分为多个簇,使得同一簇内的样本相似度较高,而不同簇之间的样本相似度较低。在数据分析中,聚类算法可以帮助我们发现数据的内在结构和规律,从而为进一步的数据分析和挖掘提供有价值的信息。


聚类算法在现实中的应用:用户画像,广告推荐,搜索引擎的流量推荐,恶意流量识别,新闻聚类,筛选排序;图像分割,降维,识别;离群点检测;


在聚类算法中根据样本之间的相似性,将样本划分到不同的类别中,对于不同的相似度计算方法,会得到不同的聚类结果。


K-Means算法


K-means是一种基于划分的聚类算法,其基本原理是通过迭代计算,将数据集划分为K个簇,使得每个簇内的数据点到该簇中心的距离之和最小。


K-means算法的主要步骤:


  • 初始化:选择K个初始质心;
  • 分配:将每个数据点分配到距离最近的质心所在的簇;
  • 更新:重新计算每个簇的质心;
  • 迭代:重复分配和更新步骤,直到质心不再发生变化或达到最大迭代次数。


K-means算法适用于球形簇分布的数据,对噪声和异常值较为敏感,需要预先指定簇的数量K。


层次聚类算法 


层次聚类是一种基于树形结构的聚类方法,通过计算数据点之间的距离,逐步将数据点合并为更大的簇。层次聚类可以分为凝聚型(自下而上)和分裂型(自上而下)两种方法。


  • 初始化:将每个数据点视为一个簇;
  • 合并:计算簇之间的距离,将距离最近的两个簇合并为一个新的簇;
  • 迭代:重复合并步骤,直到所有数据点合并为一个簇或达到预设的簇数量。


层次聚类不需要预先指定簇的数量,可以发现任意形状的簇,但计算复杂度较高,不适合处理大规模数据集。


DBSCAN算法


DBSCAN(Density-Based Spatial Clustering of Applications with Noise)是一种基于密度的聚类算法,其基本原理是通过定义数据点的邻域半径和邻域密度阈值,将相互靠近且密度相近的数据点划分为一个簇。


  • 初始化:选择一个尚未访问的数据点;
  • 扩展:如果该数据点的邻域内有足够多的数据点,则将其纳入当前簇,并继续扩展邻域;
  • 迭代:重复扩展步骤,直到所有数据点被访问。


DBSCAN算法可以发现任意形状的簇,对噪声和异常值具有较好的鲁棒性,需要预先设定邻域半径和密度阈值。



KMeans Api


sklearn.cluster.KMeans(n_clusters=8)


  • 参数:n_clusters:开始的聚类中心数量


estimator.fit(x)
estimator.predict(x)
estimator.fit_predict(x)


案例


随机创建不同二维数据集作为训练集,并结合k-means算法将其聚类 。


聚类参数n_cluster传值不同,得到的聚类结果不同。


make_blobs函数是用于生成模拟数据的函数,它返回一个包含样本数据和对应标签的元组


  • n_samples:表示要生成的样本数量,默认为100。
  • n_features:表示每个样本的特征数量,默认为2。
  • centers:表示类别的中心点坐标,可以是一个列表或数组,其中每个元素代表一个类别的中心点坐标。在给定的示例中,有4个类别,分别位于(-1, -1)、(0, 0)、(1, 1)和(2, 2)。
  • cluster_std:表示每个类别的标准差,可以是一个列表或数组,其中每个元素代表一个类别的标准差。在给定的示例中,有4个类别,它们的标准差分别为0.4、0.2、0.2和0.2。
  • random_state:表示随机数生成器的种子,用于控制随机性。在给定的示例中,随机数生成器的种子设置为9。


import matplotlib.pyplot as plt
from sklearn.datasets import make_blobs
from sklearn.cluster import KMeans
from sklearn.metrics import silhouette_score
 
# 簇中心在[-1,-1], [0,0],[1,1], [2,2], 簇方差分别为[0.4, 0.2, 0.2, 0.2]
X, y = make_blobs(n_samples=1000, n_features=2, centers=[[-1, -1], [0, 0], [1, 1], [2, 2]],
                  cluster_std=[0.4, 0.2, 0.2, 0.2],
                  random_state=9)
 
# 数据集可视化
plt.scatter(X[:, 0], X[:, 1]')
plt.show()



使用k-means进行聚类,并使用silhouette_score评估


y_pred = KMeans(n_clusters=2, random_state=9).fit_predict(X)
 
plt.scatter(X[:, 0], X[:, 1], c=y_pred)
plt.show()
 
print(silhouette_score(X, y_pred))
 
# 0.6634549555891298




K-Means聚类步骤


  • K表示初始中心点个数(计划聚类数)


  • means求中心点到其他数据点距离的平均值


  1. 随机设置K个特征空间内的点作为初始的聚类中心


  1. 对于其他每个点计算到K个中心的距离,未知的点选择最近的一个聚类中心点作为标记类别


  1. 接着对着标记的聚类中心之后,重新计算出每个聚类的新中心点。


  1. 如果计算得出的新中心点与原中心点一样那么结束,否则重新进行第二步过程。


模型评估


聚类算法模型评估通常涉及多种指标,这些指标可以帮助我们了解聚类的效果和质量。


  1. SSE(Sum of Squared Errors):SSE计算的是聚类中心与各个样本点之间误差的平方和。它衡量的是簇内紧密程度,即簇内样本与聚类中心的相似度。SSE越小,表示簇内样本越紧密,聚类效果越好。
  2. 轮廓系数(Silhouette Coefficient):轮廓系数结合了簇内的凝聚力和簇间的分离力,是一种基于样本之间距离的评估指标。它的值域在-1到1之间,值越大表示聚类效果越好。
  3. Calinski-Harabaz指数(CH指数):CH指数基于簇内和簇间的协方差计算,值越大表示聚类效果越好。它适用于簇大小差不多的情况。
  4. Davies-Bouldin指数(DB指数):DB指数是基于样本之间距离的评估指标,它评估的是簇之间的分离度。DB指数越小,表示簇之间的分离度越好,聚类效果越佳。


Elbow method — K值确定


方法的基本思想是:


  1. 对于不同的K值,计算每个K值对应的总内平方和(Within-Cluster-Sum of Squared Errors),即每个样本点到其所属簇质心的距离的平方和。
  2. 随着K值的增加,WCSS会逐渐减小,因为更多的簇意味着样本点与其质心的平均距离更小。
  3. 绘制WCSS随K值变化的折线图,通常会出现一个“肘点”(elbow point),即WCSS下降速度明显变慢的地方。
  4. “肘点”对应的K值被认为是较优的簇数量,因为它在减少误差的同时,并没有大幅增加簇的数量。


                     


下降率突然变缓时即认为是最佳的k值。


轮廓系数法


结合聚类的凝聚度和分离度,用于评估聚类的效果,使其内部距离最小化,外部距离最大化


计算样本到同簇其他样本的平均距离 ,距离越小样本的簇内不相似度越小,说明样本越应该被聚类到该簇。


求出所有样本的轮廓系数后再求平均值就得到了平均轮廓系数。平均轮廓系数的取值范围为[-1,1],系数越大,聚类效果越好。


每次聚类后,每个样本都会得到一个轮廓系数,为1时,说明这个点与周围簇距离较远,结果非常好,为0,说明这个点可能处在两个簇的边界上,当值为负时,该点可能被误分了。


目录
打赏
0
0
0
0
50
分享
相关文章
20分钟掌握机器学习算法指南
在短短20分钟内,从零开始理解主流机器学习算法的工作原理,掌握算法选择策略,并建立对神经网络的直观认识。本文用通俗易懂的语言和生动的比喻,帮助你告别算法选择的困惑,轻松踏入AI的大门。
175 8
【重磅发布】AllData数据中台核心功能:机器学习算法平台
杭州奥零数据科技有限公司成立于2023年,专注于数据中台业务,维护开源项目AllData并提供商业版解决方案。AllData提供数据集成、存储、开发、治理及BI展示等一站式服务,支持AI大模型应用,助力企业高效利用数据价值。
AI训练师入行指南(三):机器学习算法和模型架构选择
从淘金到雕琢,将原始数据炼成智能珠宝!本文带您走进数字珠宝工坊,用算法工具打磨数据金砂。从基础的经典算法到精密的深度学习模型,结合电商、医疗、金融等场景实战,手把手教您选择合适工具,打造价值连城的智能应用。掌握AutoML改装套件与模型蒸馏术,让复杂问题迎刃而解。握紧算法刻刀,为数字世界雕刻文明!
161 6
使用 PAI-DSW x Free Prompt Editing图像编辑算法,开发个人AIGC绘图小助理
使用 PAI-DSW x Free Prompt Editing图像编辑算法,开发个人AIGC绘图小助理
基于机器学习的人脸识别算法matlab仿真,对比GRNN,PNN,DNN以及BP四种网络
本项目展示了人脸识别算法的运行效果(无水印),基于MATLAB2022A开发。核心程序包含详细中文注释及操作视频。理论部分介绍了广义回归神经网络(GRNN)、概率神经网络(PNN)、深度神经网络(DNN)和反向传播(BP)神经网络在人脸识别中的应用,涵盖各算法的结构特点与性能比较。
解锁机器学习的新维度:元学习的算法与应用探秘
元学习作为一个重要的研究领域,正逐渐在多个应用领域展现其潜力。通过理解和应用元学习的基本算法,研究者可以更好地解决在样本不足或任务快速变化的情况下的学习问题。随着研究的深入,元学习有望在人工智能的未来发展中发挥更大的作用。
CCS 2024:如何严格衡量机器学习算法的隐私泄露? ETH有了新发现
在2024年CCS会议上,苏黎世联邦理工学院的研究人员提出,当前对机器学习隐私保护措施的评估可能存在严重误导。研究通过LiRA攻击评估了五种经验性隐私保护措施(HAMP、RelaxLoss、SELENA、DFKD和SSL),发现现有方法忽视最脆弱数据点、使用较弱攻击且未与实际差分隐私基线比较。结果表明这些措施在更强攻击下表现不佳,而强大的差分隐私基线则提供了更好的隐私-效用权衡。
182 14
机器人路径规划和避障算法matlab仿真,分别对比贪婪搜索,最安全距离,RPM以及RRT四种算法
本程序基于MATLAB 2022A实现机器人路径规划与避障仿真,对比贪婪搜索、最安全距离、RPM和RRT四种算法。通过地图模拟环境,输出各算法的路径规划结果,展示其在避障性能与路径优化方面的差异。代码包含核心路径搜索逻辑,并附有测试运行图示,适用于机器人路径规划研究与教学演示。
140 64
基于FPGA的图像退化算法verilog实现,分别实现横向和纵向运动模糊,包括tb和MATLAB辅助验证
本项目基于FPGA实现图像运动模糊算法,包含横向与纵向模糊处理流程。使用Vivado 2019.2与MATLAB 2022A,通过一维卷积模拟点扩散函数,完成图像退化处理,并可在MATLAB中预览效果。
基于精英个体保留策略遗传优化的生产调度算法matlab仿真
本程序基于精英个体保留策略的遗传算法,实现生产调度优化。通过MATLAB仿真,输出收敛曲线与甘特图,直观展示调度结果与迭代过程。适用于复杂多约束生产环境,提升资源利用率与调度效率。

热门文章

最新文章

AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等