Android MemoryFile 共享内存

简介: Android MemoryFile 共享内存

应用场景:

跨进程传输大数据,如文件、图片等;

技术选型:

共享内存–MemoryFile;

优点:

1. 共享内存没有传输大小限制,所以和应用总的分配内存一样(512MB);

2. MemoryFile 是对 SharedMemory 的包装,使用简单便于管理;

实现步骤:

(以A进程共享文件a.txt给B进程为例)

A进程: 创建共享内存空间工具类
 
public class ShareMemoryUtils {
 
    private static ParcelFileDescriptor getPfdFromMemoryFile(final String name, final byte[] bytes) {
        ParcelFileDescriptor pfd = null;
        try {
                    long startTime = System.currentTimeMillis();
                    MemoryFile memoryFile = null;
                    try {
                        memoryFile = new MemoryFile(name, bytes.length);
                        memoryFile.allowPurging(true);
                        memoryFile.writeBytes(bytes, 0, 0, bytes.length);
                        pfd = getParcelFileDescriptor(memoryFile);
                    } catch (Exception e) {
                        e.printStackTrace();
                    } finally {
                        closeMemoryFile(memoryFile, null);
                    }
                }
            });
        }
        return pfd;
    }
 
    private static ParcelFileDescriptor getParcelFileDescriptor(MemoryFile memoryFile) {
        try {
            Method method = MemoryFile.class.getDeclaredMethod("getFileDescriptor");
            method.setAccessible(true);
            FileDescriptor fd = (FileDescriptor) method.invoke(memoryFile);
            return ParcelFileDescriptor.dup(fd);
        } catch (Exception e) {
            e.printStackTrace();
            return null;
        }
    }
 
    private static void closeMemoryFile(MemoryFile memoryFile, ParcelFileDescriptor pfd) {
        if (pfd != null) {
            try {
                pfd.close();
            } catch (IOException e) {
                e.printStackTrace();
            }
        }
        if (memoryFile != null) {
            memoryFile.close();
        }
    }
 
}
A进程:创建aidl接口,使用binder接口传递文件描述符
interface IMemoryFileApi {
    ParcelFileDescriptor getParcelFileDescriptor(String type, String params);
    boolean setParcelFileDescriptor(String type, in ParcelFileDescriptor pfd, String params);
    oneway void releaseParcelFileDescriptor(String type);
}
B进程:通过bindService连接到A进程,并调用aidl接口获取文件描述符
/**
     * 通过 binder 接口获取远程进程共享内存的文件描述符
     */
    private ParcelFileDescriptor getParcelFileDescriptor() {
        try {
            if (iMemoryFileApi != null) {
                ParcelFileDescriptor pfd = iMemoryFileApi.getParcelFileDescriptor();
                return pfd;
            }
        } catch (Exception e) {
            e.printStackTrace();
        }
        return null;
    }
B进程:通过文件描述符读取数据流即可;

注意:

文件描述符在每个进程都有副本,A进程的文件描述符被B进程接收后,实际上已经有了两份文件描述符,即两个进程有各自的内存映射空间。所以B进程读取数据流之后,除了要关闭自己进程的文件描述符对象之外,还要调用接口关闭A进程中的文件描述符;

B进程想要把修改后的文件数据回写给A进程时,需要做的操作和A进程的操作是完全一样的,把文件数据重新创建共享内存,再把文件描述符通过binder接口传递给A进程即可;

总结

网上很多时间比较久的贴子,通过各种反射在A进程获取MemoryFIle来读取共享数据,这种方式并不可取;MemoryFile新版本的封装方式就体现了它的使用方式,Google是希望随时使用随时创建MemoryFile并把文件描述附共享出去这种方式来实现功能的。


android MemoryFile内存共享

进程之间传递数据,由于Binder传递数据有限制1M,所以如果遇到大的数据传递的时候就需要使用使用到MemoryFile内存共享来解决,最合适不过了

首先,MemoryFile是基于Binder自带的transact方法进行传输数据的,因此直接继承Binder即可,不过一般项目中免不了传递一些基本数据类型或者bean数据,因此一般结合aidl一起使用。

android aidl使用记录

  • 服务端处理数据
 
    private byte[] buffer = new byte[1024];
  //public class MyBinder extends IRtcService.Stub {
    public class MyBinder extends Binder {
    //此方法Binder自带
        @Override
        public boolean onTransact(int code, Parcel data, Parcel reply, int flags) throws RemoteException {
            LogUtil.e("接收到远端调用" + "code" + code);
            if (code == 100) {
                try {
                    ParcelFileDescriptor pfd = data.readParcelable(null);
                    // 或者
//                    ParcelFileDescriptor pfd = data.readFileDescriptor();
                    FileDescriptor fileDescriptor = pfd.getFileDescriptor();
                    FileInputStream fi = new FileInputStream(fileDescriptor);
                    fi.read(buffer);
                    fi.close();
                    LogUtil.e("--->" + new String(buffer).replace("\0", ""));
 
                    //返回给客户端
                    reply.writeString("服务器接受数据成功");
                    reply.writeInt(200);
                    return true;
                } catch (IOException e) {
                    e.printStackTrace();
                }
 
 
            }
            return super.onTransact(code, data, reply, flags);
        }
 
    }
  • 客户端
 
    private ServiceConnection mConnection = new ServiceConnection() {
        @Override
        public void onServiceConnected(ComponentName name, IBinder service) {
        try {
                /**
                 *
                 */
                // 参数1文件名,可为null,参数2文件长度
                mMemoryFile = new MemoryFile(null, 1024);
                //在设置了allowPurging为false之后,这个MemoryFile对应的Ashmem就会被标记成"pin",
                // 那么即使在android系统内存不足的时候,也不会对这段内存进行回收
                mMemoryFile.allowPurging(false);
                android.os.Parcel data = android.os.Parcel.obtain();
                android.os.Parcel reply = android.os.Parcel.obtain();
 
                byte[] buffer = "31283216382163812362183621832163812".getBytes();
                mMemoryFile.writeBytes(buffer, 0, 0, buffer.length);
                Method getFileDescriptorMethod = mMemoryFile.getClass().getDeclaredMethod("getFileDescriptor");
                if (getFileDescriptorMethod != null) {
                    FileDescriptor fileDescriptor = (FileDescriptor) getFileDescriptorMethod.invoke(mMemoryFile);
                    // 序列化,才可传送
                    ParcelFileDescriptor pfd = ParcelFileDescriptor.dup(fileDescriptor);
 
                    //写入数据,对应服务端用data.readParcelable(null)接收数据
                    data.writeParcelable(pfd, 0);
                    // 或者,对应服务端用data.readFileDescriptor()接收数据
//                    data.writeFileDescriptor(fileDescriptor);
                    /**
                     * code 是一个整形的唯一标识,用于区分执行哪个方法,客户端会传递此参数,告诉服务端执行哪个方法;
                     * data客户端传递过来的参数;
                     * replay服务器返回回去的值;
                     * flags标明是否有返回值,0为有(双向),1为没有(单向)。
                     */
                    service.transact(100, data, reply, 0);
 
                    //服务器返回的值
                    String message = reply.readString();
                    LogUtil.e("--message--->" + message);
                    int code = reply.readInt();
                    LogUtil.e("--code--->" + code);
                    if (code==200){
                      data.recycle();
                        reply.recycle();
                        mMemoryFile.close();
                        mMemoryFile=null;
                    }
 
                }
 
 
            } catch (RemoteException e) {
                e.printStackTrace();
            } catch (IOException e) {
                e.printStackTrace();
            } catch (NoSuchMethodException e) {
                e.printStackTrace();
            } catch (IllegalAccessException e) {
                e.printStackTrace();
            } catch (InvocationTargetException e) {
                e.printStackTrace();
            }
        }
 
        @Override
        public void onServiceDisconnected(ComponentName name) {
            if (mConnection != null) {
                try {
                    iRtcService = null;
                    unbindService(mConnection);
                } catch (Exception e) {
 
                }
            }
        }
    };
  • 结果
    客户端
03-15 21:16:36.011 4327-4327/com.fuyao.elf_android_remote E/elf_remote: --message--->服务器接受数据成功
03-15 21:16:36.011 4327-4327/com.fuyao.elf_android_remote E/elf_remote: --code--->200

服务端

03-15 21:16:36.010 4300-4313/com.fuyao.elf_android_center:rtc_remote E/elf_center: 接收到远端调用code100
03-15 21:16:36.010 4300-4313/com.fuyao.elf_android_center:rtc_remote E/elf_center: --->31283216382163812362183621832163812

Android内存映射文件实现

1. 什么是内存映射文件

内存映射文件是一种将磁盘上的文件映射到内存中的方法。通过内存映射文件,可以将文件的内容直接映射到内存中的一个地址空间,从而可以直接对内存进行读写操作,而无需通过传统的文件IO操作。

在Android开发中,内存映射文件常常用于处理大文件或者需要频繁读写的文件,因为通过内存映射文件可以获得更高的IO性能。

2. Android内存映射文件的实现方式

Android提供了MemoryFile类来实现内存映射文件的功能。MemoryFile是一个基于共享内存的IPC(进程间通信)机制,它允许一个进程将一个内存映射文件映射到另一个进程的地址空间中。

下面是一个简单的代码示例,演示了如何使用MemoryFile实现内存映射文件:

// 创建一个内存映射文件
MemoryFile memoryFile = new MemoryFile("test", 1024);
 
// 向内存映射文件写入数据
String data = "Hello, MemoryFile!";
byte[] buffer = data.getBytes();
memoryFile.writeBytes(buffer, 0, 0, buffer.length);
 
// 从内存映射文件读取数据
byte[] readBuffer = new byte[buffer.length];
memoryFile.readBytes(readBuffer, 0, 0, readBuffer.length);
String readData = new String(readBuffer);
 
// 打印读取的数据
System.out.println(readData);
 
// 释放内存映射文件
memoryFile.close();

在上面的代码中,首先我们创建了一个大小为1024字节的内存映射文件。然后,我们向内存映射文件写入了字符串数据,接着又从内存映射文件中读取了数据,并将其转换为字符串。最后,我们释放了内存映射文件。

需要注意的是,MemoryFile类只能在同一个进程的不同线程之间进行通信,如果需要在不同进程之间通信,则需要使用其他的IPC机制,比如Binder。

3. 内存映射文件的优势和应用场景

内存映射文件相比于传统的文件IO操作有如下优势:

  • 更高的IO性能:由于内存映射文件将文件内容映射到内存中,所以可以避免频繁的磁盘IO操作,从而获得更高的IO性能。
  • 更低的内存占用:内存映射文件只将文件的部分或全部内容映射到内存中,而不是将整个文件加载到内存中,所以可以减少内存的占用。
  • 更方便的数据访问:通过内存映射文件,可以直接对内存中的数据进行读写操作,而无需通过文件IO相关的API,从而简化了数据访问的操作。

内存映射文件常常应用于以下场景:

  • 大文件处理:当需要处理大文件时,通过内存映射文件可以获得更高的IO性能。
  • 频繁读写文件:当需要频繁读写文件时,通过内存映射文件可以避免频繁的磁盘IO操作,提高程序的响应速度。
  • 进程间通信:通过内存映射文件可以在同一个进程的不同线程之间进行通信。

4. 总结

本文介绍了Android内存映射文件的实现方式以及其优势和应用场景。通过内存映射文件,我们可以获得更高的IO性能和更方便的数据访问方式。在处理大文件或者需要频繁读写文件的场景下,使用内存映射文件可以提高程序的性能和响应速度。

相关文章
|
2月前
|
存储 开发工具 Android开发
构建高效的Android应用:从内存管理到用户界面
【5月更文挑战第29天】 随着智能手机的普及,Android应用的开发变得日益重要。然而,许多开发者在开发过程中忽视了性能优化,导致应用运行缓慢,用户体验差。本文将深入探讨如何通过有效的内存管理和用户界面优化,提升Android应用的性能。我们将详细介绍内存泄漏的原因和解决方案,以及如何使用Android的新特性来创建流畅的用户界面。无论你是新手还是经验丰富的开发者,都可以从本文中获得有用的技巧和建议。
|
2月前
|
移动开发 监控 Android开发
构建高效Android应用:从内存优化到电池寿命代码之美:从功能实现到艺术创作
【5月更文挑战第28天】 在移动开发领域,特别是针对Android系统,性能优化始终是关键议题之一。本文深入探讨了如何通过细致的内存管理和电池使用策略,提升Android应用的运行效率和用户体验。文章不仅涵盖了现代Android设备上常见的内存泄漏问题,还提出了有效的解决方案,包括代码级优化和使用工具进行诊断。同时,文中也详细阐述了如何通过减少不必要的后台服务、合理管理设备唤醒锁以及优化网络调用等手段延长应用的电池续航时间。这些方法和技术旨在帮助开发者构建更加健壮、高效的Android应用程序。
|
16天前
|
大数据 Android开发
Android使用AIDL+MemoryFile传递大数据
Android使用AIDL+MemoryFile传递大数据
10 0
|
16天前
|
缓存 Java Linux
Android 匿名内存深入分析
Android 匿名内存深入分析
12 0
|
2月前
|
监控 Android开发 UED
构建高效的Android应用:从内存管理到用户体验
【5月更文挑战第28天】 在移动开发的世界中,打造一个既快速又高效的Android应用是每个开发者追求的目标。本文将深入探讨如何通过合理的内存管理策略、优化的代码实践和用户界面设计的提升来增强应用性能。我们将剖析内存泄漏的根源,提供解决方案,探索Kotlin与Java在性能上的差异,并分析如何利用Android系统提供的工具监控和改善应用表现。此外,我们还将讨论Material Design的应用以及其对用户体验的影响。通过这些技术的综合运用,你将能够为用户提供更流畅、响应更快的使用体验。
|
2月前
|
监控 Java Android开发
构建高效Android应用:采用Kotlin进行内存优化的策略
【5月更文挑战第26天】随着移动设备的普及,用户对应用程序的性能要求越来越高。在资源受限的Android平台上,内存管理成为提升性能的关键因素之一。本文将深入探讨使用Kotlin语言开发Android应用时,如何通过智能内存管理策略来提高应用性能和用户体验。我们将分析内存泄露的原因,介绍有效的内存优化技巧,并通过实例代码展示如何在Kotlin中实现这些优化措施。
|
2月前
|
缓存 Java Android开发
构建高效的Android应用:内存优化策略解析
【5月更文挑战第25天】在移动开发领域,性能优化一直是一个不断探讨和精进的课题。特别是对于资源受限的Android设备来说,合理的内存管理直接关系到应用的流畅度和用户体验。本文深入分析了Android内存管理的机制,并提出了几种实用的内存优化技巧。通过代码示例和实践案例,我们旨在帮助开发者识别和解决内存瓶颈,从而提升应用性能。
|
2月前
|
存储 算法 Java
Android 应用开发中的内存优化策略
【5月更文挑战第25天】 在移动设备上,资源的有限性要求开发者对应用进行严格的性能优化。特别是对于Android平台,由于设备的多样性和碎片化问题,内存管理成为确保应用流畅运行的关键因素之一。本文将探讨几种实用的内存优化技术,包括避免内存泄漏、合理使用数据结构和算法、优化图片资源以及利用Android系统的垃圾回收机制。文章的目的是为Android开发者提供一套有效的内存管理工具集,帮助他们构建更高效、更稳定的应用。
|
2月前
|
缓存 移动开发 Android开发
构建高效Android应用:从内存优化到电池寿命
【5月更文挑战第18天】在移动开发领域,一个优秀的Android应用不仅要拥有流畅的用户界面和丰富的功能,更要在设备资源有限的前提下保持高效运行。本文将探讨Android应用开发中关键的性能优化策略,包括内存使用优化、CPU使用减少和电池寿命延长等方面。通过分析常见的性能瓶颈和提供实用的解决方案,帮助开发者打造更高效、更受欢迎的Android应用。
|
2月前
|
移动开发 监控 Android开发
构建高效Android应用:从内存优化到电池续航
【5月更文挑战第22天】 在移动开发的世界中,一个流畅且高效的Android应用是区分优秀与平庸的关键因素。本文深入探讨了如何通过内存管理和电池使用效率的优化来提升应用性能,确保最终用户获得无缝且持久的体验。我们将透过具体策略和编码实践,揭示开发过程中可实施的改进措施,旨在帮助开发者克服常见的性能瓶颈,打造更高质量的Android应用。