网络原理,网络通信以及网络协议

简介: 网络原理,网络通信以及网络协议

网络原理

概念

随着时代的发展,越来越需要计算机之间互相通信,共享软件和数据,即以多个计算机协同工作来完

成业务,就有了网络互连。

网络互连:将多台计算机连接在⼀起,完成数据共享。

根据网络互连的规模不同,可以划分为局域网和广域网。

网络通信

本质是⽹络数据传输,即计算机之间通过网络来传输数据.

局域网LAN

局域网,即Local Area Network,简称LAN。Local即标识了局域网是本地,局部组建的⼀种私有网络。

局域网内的主机之间能方便的进行网络通信,又称为内网;局域网和局域网之间在没有连接的情况

下,是无法通信的。

广域网WAN

⼴域网,即Wide Area Network,简称WAN。

通过路由器,将多个局域网连接起来,在物理上组成很大范围的网络,就形成了广域网。⼴域网内部

的局域网都属于其子网。


网络通信

网络互连的目的是进行网络通信,也即是网络数据传输,更具体⼀点,是网络主机中的不同进程间,

基于⽹络传输数据。

那么,在组建的网络中,如何判断到底是从哪台主机,将数据传输到那台主机呢?这就需要使用IP地

址来标识。

IP地址

主要用于标识网络主机、其他网络设备(如路由器)的网络地址。简单说,IP地址用于定位主

机的网络地址

IP地址的格式:IP地址是⼀个32位的二进制数,通常被分割为4个“8位⼆进制数”(也就是4个字节),如:

01100100.00000100.00000101.00000110。

通常用“点分十进制”的方式来表示,即a.b.c.d的形式(a,b,c,d都是0~255之间的十进制整数)。

如:100.4.5.6

端口号

在网络通信中,IP地址⽤于标识主机⽹络地址,端口号可以标识主机中发送数据、接收数据的进程。

简单说:端⼝号用于定位主机中的进程

端口号的格式:是0~65535范围的数字,在网络通信中,进程可以通过绑定⼀个端口号,来发送及接收网络数据.


网络协议

概念

协议,网络协议的简称,网络协议是网络通信(即网络数据传输)经过的所有网络设备都必须共同遵

从的⼀组约定、规则。如怎么样建立连接、怎么样互相识别等。只有遵守这个约定,计算机之间才能

相互通信交流。

协议(protocol)最终体现为在网络上传输的数据包的格式

五元组

在TCP/IP协议中,用五元组来标识⼀个网络通信:

  1. 源IP:标识源主机
  2. 源端口号:标识源主机中该次通信发送数据的进程
  3. 目的IP:标识目的主机
  4. 目的端口号:标识目的主机中该次通信接收数据的进程
  5. 协议号:标识发送进程和接收进程双方约定的数据格式

TCP/IP协议五层模型

TCP/IP是⼀组协议的代名词,它还包括许多协议,组成了TCP/IP协议簇。

TCP/IP通讯协议采用了5层的层级结构,每⼀层都呼叫它的下⼀层所提供的网络来完成自己的需求。

  1. 应⽤层:负责应用程序间沟通(简单来说就是客户在网络上购物),如简单电子邮件传输(SMTP)、文件传输协议(FTP)、网络远程访问协议(Telnet)等。我们的网络编程主要就是针对应用层。
  2. 传输层:负责两台主机之间的数据传输(关注发货的起点和终点)。如传输控制协议(TCP),能够确保数据可靠的从源主机发 送到目标主机。
  3. ⽹络层:负责地址管理和路由选择(发货起点到终点的路线规划)。例如在IP协议中,通过IP地址来标识⼀台主机,并通过路由表的方式规划出两台主机之间的数据传输的线路。路由器(Router)工作在网路层。
  4. 数据链路层:负责设备之间的数据帧的传送和识别(发货途中相邻两地的货物运输方式)。例如网卡设备的驱动、帧同步(就是说从网线上检测到什么信号算作新帧的开始)、冲突检测(如果检测到冲突就自动重发)、数据差错校验等工作。有以太网、令牌环网,无线LAN等标准。交换机(Switch)工作在数据链路层。
  5. 物理层:负责光/电信号的传递方式(通信过程中的基础设施-纯硬件)。现在以太网通用的网线(双绞线)、早期以太网采用的的同轴电缆(现在主要用于有线电视)、光纤,现在的wifi无线网使用电磁波等都属于物理层的概念。物理层的能力决定了最大传输速率、传输距离、抗干扰性等。集线器(Hub)工作在物理层。

网络设备分层

  • 对于⼀台主机,它的操作系统内核实现了从传输层到物理层的内容,也即是TCP/IP五层模型的下四
    层;
  • 对于⼀台路由器,它实现了从网络层到物理层,也即是TCP/IP五层模型的下三层;
  • 对于⼀台交换机,它实现了从数据链路层到物理层,也即是TCP/IP五层模型的下两层;
  • 对于集线器,它只实现了物理层

注意我们这⾥说的是传统意义上的交换机和路由器,也称为二层交换机(工作在TCP/IP五层模型的下

两层)、三层路由器(⼯作在TCP/IP五层模型的下三层)。

随着现在网络设备技术的不断发展,也出现了很多3层或4层交换机,4层路由器。我们以下说的⽹络设

备都是传统意义上的交换机和路由器。

封装和分⽤

• 不同的协议层对数据包有不同的称谓,在传输层叫做段(segment),在网络层叫做数据报

(datagram),在链路层叫做帧(frame)。

• 应用层数据通过协议栈发到网络上时,每层协议都要加上⼀个数据首部(header),称为封装

(Encapsulation)。

• 首部信息中包含了⼀些类似于首部有多长,载荷(payload)有多长,上层协议是什么等信息。

• 数据封装成帧后发到传输介质上,到达目的主机后每层协议再剥掉相应的首部,根据首部中的"上

层协议字段"将数据交给对应的上层协议处理。

如果觉得文章不错,期待你的一键三连哦,你个鼓励是我创作的动力之源,让我们一起加油,顶峰相见!!!💓 💓 💓

相关文章
|
22天前
|
网络协议 安全 5G
网络与通信原理
【10月更文挑战第14天】网络与通信原理涉及众多方面的知识,从信号处理到网络协议,从有线通信到无线通信,从差错控制到通信安全等。深入理解这些原理对于设计、构建和维护各种通信系统至关重要。随着技术的不断发展,网络与通信原理也在不断演进和完善,为我们的生活和工作带来了更多的便利和创新。
60 3
|
2月前
|
并行计算 安全 网络协议
探索未来网络:量子互联网的原理与应用
本文深入探讨了量子互联网的基本概念、技术原理及其潜在应用。通过对量子纠缠、量子叠加和量子隐形传态等核心概念的解释,文章展示了量子互联网如何利用量子力学特性来实现超高速、超高安全性的通信。此外,还讨论了量子互联网在金融、医疗、国防等领域的应用前景,以及当前面临的技术挑战和未来的发展方向。
71 2
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习的奥秘:探索神经网络的核心原理
本文将深入浅出地介绍深度学习的基本概念,包括神经网络的结构、工作原理以及训练过程。我们将从最初的感知机模型出发,逐步深入到现代复杂的深度网络架构,并探讨如何通过反向传播算法优化网络权重。文章旨在为初学者提供一个清晰的深度学习入门指南,同时为有经验的研究者回顾和巩固基础知识。
72 11
|
4天前
|
运维 物联网 网络虚拟化
网络功能虚拟化(NFV):定义、原理及应用前景
网络功能虚拟化(NFV):定义、原理及应用前景
12 3
|
15天前
|
网络协议 安全 算法
网络空间安全之一个WH的超前沿全栈技术深入学习之路(9):WireShark 简介和抓包原理及实战过程一条龙全线分析——就怕你学成黑客啦!
实战:WireShark 抓包及快速定位数据包技巧、使用 WireShark 对常用协议抓包并分析原理 、WireShark 抓包解决服务器被黑上不了网等具体操作详解步骤;精典图示举例说明、注意点及常见报错问题所对应的解决方法IKUN和I原们你这要是学不会我直接退出江湖;好吧!!!
网络空间安全之一个WH的超前沿全栈技术深入学习之路(9):WireShark 简介和抓包原理及实战过程一条龙全线分析——就怕你学成黑客啦!
|
26天前
|
机器学习/深度学习 人工智能 监控
深入理解深度学习中的卷积神经网络(CNN):从原理到实践
【10月更文挑战第14天】深入理解深度学习中的卷积神经网络(CNN):从原理到实践
76 1
|
28天前
|
网络协议 Linux 应用服务中间件
Socket通信之网络协议基本原理
【10月更文挑战第10天】网络协议定义了机器间通信的标准格式,确保信息准确无损地传输。主要分为两种模型:OSI七层模型与TCP/IP模型。
|
1月前
|
存储 安全 算法
网络安全与信息安全:构建数字世界的防线在数字化浪潮席卷全球的今天,网络安全与信息安全已成为维系现代社会正常运转的关键支柱。本文旨在深入探讨网络安全漏洞的成因与影响,剖析加密技术的原理与应用,并强调提升公众安全意识的重要性。通过这些综合性的知识分享,我们期望为读者提供一个全面而深刻的网络安全视角,助力个人与企业在数字时代中稳健前行。
本文聚焦网络安全与信息安全领域,详细阐述了网络安全漏洞的潜在威胁、加密技术的强大防护作用以及安全意识培养的紧迫性。通过对真实案例的分析,文章揭示了网络攻击的多样性和复杂性,强调了构建全方位、多层次防御体系的必要性。同时,结合当前技术发展趋势,展望了未来网络安全领域的新挑战与新机遇,呼吁社会各界共同努力,共筑数字世界的安全防线。
|
1月前
|
存储 安全 自动驾驶
探索未来网络:量子互联网的原理与应用
【10月更文挑战第2天】 本文旨在探讨量子互联网的基本原理、技术实现及其在通讯领域的革命性应用前景。量子互联网利用量子力学原理,如量子叠加和量子纠缠,来传输信息,有望大幅提升通信的安全性和速度。通过详细阐述量子密钥分发(QKD)、量子纠缠交换和量子中继等关键技术,本文揭示了量子互联网对未来信息社会的潜在影响。
|
15天前
|
网络协议 安全 算法
网络空间安全之一个WH的超前沿全栈技术深入学习之路(9-2):WireShark 简介和抓包原理及实战过程一条龙全线分析——就怕你学成黑客啦!
实战:WireShark 抓包及快速定位数据包技巧、使用 WireShark 对常用协议抓包并分析原理 、WireShark 抓包解决服务器被黑上不了网等具体操作详解步骤;精典图示举例说明、注意点及常见报错问题所对应的解决方法IKUN和I原们你这要是学不会我直接退出江湖;好吧!!!