Python在大数据处理中的应用实践

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
智能开放搜索 OpenSearch行业算法版,1GB 20LCU 1个月
实时数仓Hologres,5000CU*H 100GB 3个月
简介: Python在大数据处理中扮演重要角色,借助`requests`和`BeautifulSoup`抓取数据,`pandas`进行清洗预处理,面对大规模数据时,`Dask`提供分布式处理能力,而`matplotlib`和`seaborn`则助力数据可视化。通过这些工具,数据工程师和科学家能高效地管理、分析和展示海量数据。

Python在大数据处理中的应用实践

随着数据科学的蓬勃发展,Python凭借其强大的库支持、易学易用的特性,成为了处理大数据的首选语言之一。无论是数据清洗、数据分析还是机器学习,Python都能提供一整套解决方案,帮助数据工程师和科学家高效地处理海量数据。本文将探讨Python在大数据处理中的几个关键方面,并通过代码示例展示其实战应用。

1. 数据采集:使用requestsBeautifulSoup爬取网页数据

在大数据分析的初始阶段,数据采集至关重要。Python的requests库用于发送HTTP请求,而BeautifulSoup则用于解析HTML文档,提取所需数据。

import requests
from bs4 import BeautifulSoup

url = 'https://example.com/data-page'
response = requests.get(url)

soup = BeautifulSoup(response.text, 'html.parser')
data_elements = soup.find_all('div', class_='data-point')

for element in data_elements:
    print(element.text)
AI 代码解读

2. 数据清洗与预处理:运用pandas进行数据整理

pandas是Python中最常用的数据分析库,它提供了丰富的数据结构和数据分析工具,非常适合于数据清洗和预处理。

import pandas as pd

# 假设df是从CSV文件加载的大数据集
df = pd.read_csv('big_data.csv')

# 删除缺失值过多的列
df.dropna(thresh=len(df)*0.7, axis=1, inplace=True)

# 填充数值型列的缺失值
df['numeric_column'].fillna(df['numeric_column'].mean(), inplace=True)

# 对类别型数据进行独热编码
df = pd.get_dummies(df, columns=['category_column'])
AI 代码解读

3. 大数据处理框架:借助Dask处理大规模数据集

当数据量超出单机内存时,Dask成为了一个有效的解决方案。它允许用户以类似pandas的方式操作数据,但能够在分布式计算环境中运行。

import dask.dataframe as dd

# 使用Dask读取大文件
ddf = dd.read_csv('large_dataset.csv')

# 执行聚合操作
result = ddf.groupby('group_column').mean().compute()

print(result)
AI 代码解读

4. 数据可视化:利用matplotlibseaborn展示分析结果

数据可视化是理解数据的关键步骤。Python的matplotlibseaborn库提供了丰富的图表类型,便于呈现数据故事。

import matplotlib.pyplot as plt
import seaborn as sns

# 绘制柱状图
sns.barplot(x='category', y='value', data=result)
plt.title('Category Value Distribution')
plt.show()
AI 代码解读

结语

Python凭借其丰富的库生态和简洁的语法,为大数据处理提供了从数据采集、清洗、分析到可视化的全方位支持。无论是初学者还是经验丰富的数据专家,都能利用Python高效地处理大数据项目,探索数据背后的秘密。随着技术的不断进步,Python在大数据领域的应用将会更加广泛和深入。

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
目录
打赏
0
4
4
0
328
分享
相关文章
天翼云:Apache Doris + Iceberg 超大规模湖仓一体实践
天翼云基于 Apache Doris 成功落地项目已超 20 个,整体集群规模超 50 套,部署节点超 3000 个,存储容量超 15PB
天翼云:Apache Doris + Iceberg 超大规模湖仓一体实践
vivo基于Paimon的湖仓一体落地实践
本文整理自vivo互联网大数据专家徐昱在Flink Forward Asia 2024的分享,基于实际案例探讨了构建现代化数据湖仓的关键决策和技术实践。内容涵盖组件选型、架构设计、离线加速、流批链路统一、消息组件替代、样本拼接、查询提速、元数据监控、数据迁移及未来展望等方面。通过这些探索,展示了如何优化性能、降低成本并提升数据处理效率,为相关领域提供了宝贵的经验和参考。
451 3
vivo基于Paimon的湖仓一体落地实践
StarRocks 在爱奇艺大数据场景的实践
本文介绍了爱奇艺大数据OLAP服务负责人林豪在StarRocks年度峰会上的分享,重点讲述了爱奇艺OLAP引擎的演进及引入StarRocks后的显著效果。在广告业务中,StarRocks替换Impala+Kudu后,接口性能提升400%,P90查询延迟缩短4.6倍;在“魔镜”数据分析平台中,StarRocks替代Spark达67%,P50查询速度提升33倍,P90提升15倍,节省4.6个人天。未来,爱奇艺计划进一步优化存算一体和存算分离架构,提升整体数据处理效率。
StarRocks 在爱奇艺大数据场景的实践
从湖仓分离到湖仓一体,四川航空基于 SelectDB 的多源数据联邦分析实践
川航选择引入 SelectDB 建设湖仓一体大数据分析引擎,取得了数据导入效率提升 3-6 倍,查询分析性能提升 10-18 倍、实时性提升至 5 秒内等收益。
从湖仓分离到湖仓一体,四川航空基于 SelectDB 的多源数据联邦分析实践
鹰角基于 Flink + Paimon + Trino 构建湖仓一体化平台实践项目
本文整理自鹰角网络大数据开发工程师朱正军在Flink Forward Asia 2024上的分享,主要涵盖四个方面:鹰角数据平台架构、数据湖选型、湖仓一体建设及未来展望。文章详细介绍了鹰角如何构建基于Paimon的数据湖,解决了Hudi入湖的痛点,并通过Trino引擎和Ranger权限管理实现高效的数据查询与管控。此外,还探讨了湖仓一体平台的落地效果及未来技术发展方向,包括Trino与Paimon的集成增强、StarRocks的应用以及Paimon全面替换Hive的计划。
210 1
鹰角基于 Flink + Paimon + Trino 构建湖仓一体化平台实践项目
云栖实录 | 大模型在大数据智能运维的应用实践
云栖实录 | 大模型在大数据智能运维的应用实践
114 2
鹰角基于 Flink + Paimon + Trino 构建湖仓一体化平台实践项目
鹰角基于 Flink + Paimon + Trino 构建湖仓一体化平台实践项目

相关产品

  • 云原生大数据计算服务 MaxCompute