YOLOv8改进 | Neck | 添加双向特征金字塔BiFPN【含二次独家创新】

简介: 💡【YOLOv8专栏】探索特征融合新高度!BiFPN优化版提升检测性能🔍。双向加权融合解决信息丢失痛点,统一缩放增强模型效率🚀。论文&官方代码直达链接,模块化教程助你轻松实践📝。立即阅读:[YOLOv8涨点全攻略](https://blog.csdn.net/m0_67647321/category_12548649.html)✨

💡💡💡本专栏所有程序均经过测试,可成功执行💡💡💡

专栏目录:《YOLOv8改进有效涨点》专栏介绍 & 专栏目录 | 目前已有40+篇内容,内含各种Head检测头、损失函数Loss、Backbone、Neck、NMS等创新点改进

针对在特征提取过程中,特征信息丢失,特征提取能力不足等问题,研究人员提出了一种加权双向特征金字塔网络(BiFPN),它允许简单快速的多尺度特征融合;可以同时统一缩放所有主干网络、特征网络以及边界框/类别预测网络的分辨率、深度和宽度。文章在介绍主要的原理后,将手把手教学如何进行模块的代码添加和修改,并将修改后的完整代码放在文章的最后,方便大家一键运行,小白也可轻松上手实践。以帮助您更好地学习深度学习目标检测YOLO系列的挑战。

专栏地址:YOLOv8改进——更新各种有效涨点方法——点击即可跳转

1. 原理

image.png

论文地址:EfficientDet: Scalable and Efficient Object Detection——点击即可跳转

官方代码:BiFPN官方代码仓库——点击即可跳转

BIFPN,全称为双向特征金字塔网络(Bidirectional Feature Pyramid Network),是一种用于目标检测和图像分割的神经网络架构。它在EfficientDet和其他一些计算机视觉任务中被广泛使用。BIFPN的设计目标是提高特征融合的效率和效果,使得模型在计算资源有限的情况下仍能保持高性能。以下是对BIFPN的详细讲解:

  • 背景

在计算机视觉任务中,特征金字塔网络(FPN)是一种常用的方法,它通过构建不同尺度的特征图来捕获不同尺度的目标。然而,传统的FPN存在一些缺点,如特征融合效率低、信息流通不充分等。BIFPN则通过引入双向的特征融合机制和加权的特征融合方法来克服这些问题。

  • 核心思想

双向特征融合: 传统的FPN是单向的,即从高层特征图向低层特征图传递信息。而BIFPN在此基础上增加了反向的信息传递,即从低层特征图向高层特征图传递信息。这种双向的信息流动使得特征图之间的信息融合更加充分。

加权特征融合: 在BIFPN中,不同尺度的特征图在融合时会分配不同的权重。这些权重是可学习的参数,模型在训练过程中会自动调整它们,以最优地融合不同尺度的特征。这样一来,模型能够更好地利用每个特征图的信息,提高整体的特征表示能力。

  • 结构细节

BIFPN的结构设计非常灵活,可以适应不同的网络架构和任务需求。以下是BIFPN的几个关键组件:

上下文融合层:在上下文融合层中,BIFPN将来自不同尺度的特征图进行融合,采用加权求和的方式。这种加权求和通过学习到的权重来平衡不同特征图的贡献。

重复融合模块:BIFPN中通常会堆叠多个融合模块,这些模块会反复进行特征融合,从而进一步增强特征的表达能力。

尺度变化处理:BIFPN能够处理不同尺度的特征图,并在融合过程中考虑到这些尺度变化。通过上下采样等操作,BIFPN可以有效地处理不同分辨率的特征图。

  • 优势

高效性:通过加权特征融合和重复融合模块,BIFPN能够在保持高效计算的同时,提升特征表示能力。

鲁棒性:双向特征融合使得BIFPN对不同尺度目标的检测更加鲁棒,能够更好地应对多尺度问题。

灵活性:BIFPN可以方便地集成到不同的神经网络架构中,适应不同的任务需求。

  • 应用

BIFPN被广泛应用于各种计算机视觉任务中,尤其是在目标检测和图像分割方面表现出色。比如,在EfficientDet中,BIFPN作为核心组件之一,通过高效的特征融合机制显著提升了模型的检测性能。

  • 总结

BIFPN通过引入双向特征融合和加权特征融合,克服了传统FPN的局限性,提高了特征融合的效率和效果。其灵活高效的设计使其在计算机视觉任务中得到广泛应用,为提升模型性能提供了有力支持。

2.BiFPN代码实现

2.1 将BiFPN代码添加到YOLOv8种

关键步骤一: 将下面代码粘贴到在/ultralytics/ultralytics/nn/modules/block.py中,并在该文件的all中添加“Concat_BiFPN”

class Concat_BiFPN(nn.Module):
    def __init__(self, dimension=1):
        super(Concat_BiFPN, self).__init__()
        self.d = dimension
        self.w = nn.Parameter(torch.ones(3, dtype=torch.float32), requires_grad=True)
        self.epsilon = 0.0001

    def forward(self, x):
        w = self.w
        weight = w / (torch.sum(w, dim=0) + self.epsilon)  # 将权重进行归一化
        # Fast normalized fusion
        x = [weight[0] * x[0], weight[1] * x[1]]
        return torch.cat(x, self.d)

完整内容: YOLOv8改进 | Neck | 添加双向特征金字塔BiFPN【含二次独家创新】——点击即可跳转

相关文章
|
9月前
|
机器学习/深度学习 编解码 固态存储
YOLOv8改进之更换BiFPN并融合P2小目标检测层
BiFPN(Bi-directional Feature Pyramid Network)是一种用于目标检测和语义分割任务的神经网络架构,旨在改善特征金字塔网络(Feature Pyramid Network, FPN)的性能。FPN是一种用于处理多尺度信息的网络结构,通常与骨干网络(如ResNet或EfficientNet)结合使用,以生成不同分辨率的特征金字塔,从而提高对象检测和分割的性能。BiFPN在此基础上进行了改进,以更好地捕获多尺度信息和提高模型性能。
3215 0
|
9月前
|
编解码 计算机视觉 网络架构
【YOLOv8改进】BiFPN:加权双向特征金字塔网络 (论文笔记+引入代码)
该专栏深入研究了YOLO目标检测的神经网络架构优化,提出了加权双向特征金字塔网络(BiFPN)和复合缩放方法,以提升模型效率。BiFPN通过双向跨尺度连接和加权融合增强信息传递,同时具有自适应的网络拓扑结构。结合EfficientNet,构建了EfficientDet系列检测器,在效率和准确性上超越先前技术。此外,介绍了YOLOv8如何引入MPDIoU并应用BiFPN进行可学习权重的特征融合。更多详情可参考提供的专栏链接。
|
9月前
|
机器学习/深度学习 编解码 算法
YOLOv8改进 | 主干网络 | 增加网络结构增强小目标检测能力【独家创新——附结构图】
YOLOv8在小目标检测上存在挑战,因卷积导致信息丢失。本文教程将原网络结构替换为更适合小目标检测的backbone,并提供结构图。通过讲解原理和手把手教学,指导如何修改代码,提供完整代码实现,适合新手实践。文章探讨了大特征图对小目标检测的重要性,如细节保留、定位精度、特征丰富度和上下文信息,并介绍了FPN等方法。YOLOv8流程包括预处理、特征提取、融合和检测。修改后的网络结构增加了上采样和concatenate步骤,以利用更大特征图检测小目标。完整代码和修改后的结构图可在文中链接获取。
|
9月前
|
机器学习/深度学习 编解码 文件存储
YOLOv5改进 | 融合改进篇 | BiFPN+ RepViT(教你如何融合改进机制)
YOLOv5改进 | 融合改进篇 | BiFPN+ RepViT(教你如何融合改进机制)
1453 1
|
7月前
|
编解码 计算机视觉 网络架构
【YOLOv10改进- 特征融合NECK】BiFPN:加权双向特征金字塔网络
YOLOv10专栏探讨了目标检测的效率提升,提出BiFPN,一种带加权和自适应融合的双向特征金字塔网络,优化了多尺度信息传递。EfficientDet系列利用这些创新在效率与性能间取得更好平衡,D7模型在COCO测试集上达到55.1 AP。YOLOv8引入MPDIoU,结合BiFPN学习分支权重,提高检测精度。详情见[YOLOv10 创新改进](https://blog.csdn.net/shangyanaf/category_12712258.html)和相关文章。
|
4月前
|
机器学习/深度学习 计算机视觉 异构计算
YOLOv8优改系列一:YOLOv8融合BiFPN网络,实现网络快速涨点
该专栏专注于YOLOv8的 Neck 部分改进,融合了 BiFPN 网络,大幅提升检测性能。BiFPN 通过高效的双向跨尺度连接和加权特征融合,解决了传统 FPN 的单向信息流限制。文章详细介绍了 BiFPN 的原理及其实现方法,并提供了核心代码修改指导。点击链接订阅专栏,每周定时更新,助您快速提升模型效果。推荐指数:⭐️⭐️⭐️⭐️,涨点指数:⭐️⭐️⭐️⭐️。
351 0
|
9月前
|
机器学习/深度学习 编解码 文件存储
YOLOv8改进 | 融合改进篇 | BiFPN+ RepViT(教你如何融合改进机制)
YOLOv8改进 | 融合改进篇 | BiFPN+ RepViT(教你如何融合改进机制)
970 1
|
9月前
|
机器学习/深度学习 算法 计算机视觉
YOLOv8改进 | 融合模块 | 用Resblock+CBAM卷积替换Conv【轻量化网络】
在这个教程中,介绍了如何将YOLOv8的目标检测模型改进,用Resblock+CBAM替换原有的卷积层。Resblock基于ResNet的残差学习思想,减少信息丢失,而CBAM是通道和空间注意力模块,增强网络对特征的感知。教程详细解释了ResNet和CBAM的原理,并提供了代码示例展示如何在YOLOv8中实现这一改进。此外,还给出了新增的yaml配置文件示例以及如何注册模块和执行程序。作者分享了完整的代码,并对比了改进前后的GFLOPs计算量,强调了这种改进在提升性能的同时可能增加计算需求。教程适合深度学习初学者实践和提升YOLO系列模型的性能。
|
9月前
|
机器学习/深度学习 编解码 文件存储
YOLOv8改进 | 2023Neck篇 | BiFPN双向特征金字塔网络(附yaml文件+代码)
YOLOv8改进 | 2023Neck篇 | BiFPN双向特征金字塔网络(附yaml文件+代码)
951 0
|
4月前
|
机器学习/深度学习 计算机视觉 异构计算
YOLOv8优改系列一:YOLOv8融合BiFPN网络,实现网络快速涨点
本文介绍了将BiFPN网络应用于YOLOv8以增强网络性能的方法。通过双向跨尺度连接和加权特征融合,BiFPN能有效捕获多尺度特征,提高目标检测效果。文章还提供了详细的代码修改步骤,包括修改配置文件、创建模块文件、修改训练代码等,以实现YOLOv8与BiFPN的融合。
505 0
YOLOv8优改系列一:YOLOv8融合BiFPN网络,实现网络快速涨点

热门文章

最新文章