视觉语言模型导论:这篇论文能成为你进军VLM的第一步

简介: 【6月更文挑战第20天】探索AI如何理解与生成图像和文本,VLM结合图像与文本映射,涉及图像描述、问答等任务。论文由多所名校和机构研究人员共创,介绍VLM历史、类型(对比学习、掩码、生成、预训练)及应用,如图像生成和问答。同时,讨论数据质量、计算资源和模型可解释性的挑战。[阅读更多](https://arxiv.org/pdf/2405.17247)

随着人工智能的发展,我们越来越关注如何让机器理解和生成图像和文本。视觉语言模型(VLM)是这一领域的重要成果,它能够将图像和文本进行映射,从而实现图像的描述、图像的生成等功能。

然而,VLM的发展还处于初级阶段,许多问题和挑战仍然存在。为了帮助读者更好地理解VLM,我们将为你介绍一篇名为《An Introduction to Vision-Language Modeling》的论文。这篇论文由来自Meta、Université de Montréal、Mila、McGill University、University of Toronto、Carnegie Mellon University、Massachusetts Institute of Technology、New York University、University of California, Berkeley、University of Maryland、King Abdullah University of Science and Technology等机构的研究人员共同撰写,旨在为读者提供一个全面的VLM概述。

VLM是一种能够将图像和文本进行映射的模型。它的核心思想是通过学习图像和文本之间的对应关系,使得模型能够理解图像中的内容,并能够根据文本的描述生成相应的图像。

VLM的发展可以追溯到2015年,当时研究人员提出了基于图像的问答系统(Visual Question Answering),这标志着VLM的诞生。随后,研究人员开始探索如何将VLM应用于更多的任务,如图像描述生成、图像问答等。

根据不同的任务和应用场景,VLM可以分为不同的类型。

基于对比学习的VLM:这种类型的VLM通过对比学习算法,学习图像和文本之间的对应关系。例如,CLIP模型就是通过对比学习算法,学习了图像和文本之间的对应关系。
基于掩码的VLM:这种类型的VLM通过掩码算法,学习图像和文本之间的对应关系。例如,FLAVA模型就是通过掩码算法,学习了图像和文本之间的对应关系。
基于生成的VLM:这种类型的VLM通过生成算法,学习图像和文本之间的对应关系。例如,CoCa模型就是通过生成算法,学习了图像和文本之间的对应关系。
基于预训练的VLM:这种类型的VLM通过预训练算法,学习图像和文本之间的对应关系。例如,Frozen模型就是通过预训练算法,学习了图像和文本之间的对应关系。

训练VLM需要大量的数据和计算资源。为了提高训练效率,研究人员提出了许多方法和技术。

数据增强:通过数据增强技术,可以增加训练数据的多样性和丰富性,从而提高模型的泛化能力。
数据过滤:通过数据过滤技术,可以去除训练数据中的噪声和冗余信息,从而提高模型的训练效率。
模型并行:通过模型并行技术,可以将模型的训练过程并行化,从而提高模型的训练速度。
混合精度训练:通过混合精度训练技术,可以在不影响模型性能的情况下,提高模型的训练速度和内存利用率。

VLM在许多领域都有广泛的应用前景。

图像描述生成:通过VLM,可以自动生成图像的描述信息,从而帮助盲人或视觉障碍者更好地理解图像内容。
图像问答:通过VLM,可以自动回答关于图像的问题,从而帮助用户更好地理解图像内容。
图像生成:通过VLM,可以根据文本的描述生成相应的图像,从而实现图像的自动生成。
图像编辑:通过VLM,可以根据用户的需求对图像进行编辑和修改,从而实现图像的个性化定制。

尽管VLM在许多领域都取得了令人瞩目的成果,但仍然面临一些挑战。

数据质量:由于VLM需要大量的数据进行训练,因此数据的质量和多样性对模型的性能至关重要。然而,在实际应用中,数据的质量和多样性往往存在问题。
计算资源:由于VLM需要大量的计算资源进行训练,因此对计算资源的需求也是一个挑战。特别是对于一些小型企业或个人开发者来说,计算资源可能是一个限制因素。
模型可解释性:由于VLM通常是一个黑盒模型,因此其可解释性是一个挑战。如何让用户理解模型的决策过程和结果是一个重要的研究方向。

VLM是人工智能领域的一个重要研究方向,它的发展将对我们的生活产生深远的影响。通过这篇论文,读者可以对VLM有一个全面的了解,包括其定义、分类、训练、应用和挑战等。如果你对VLM感兴趣,这篇论文将是你开始研究VLM的第一步。

论文地址:https://arxiv.org/pdf/2405.17247

目录
打赏
0
2
2
1
396
分享
相关文章
关于计算机视觉中的自回归模型,这篇综述一网打尽了
这篇综述文章全面介绍了自回归模型在计算机视觉领域的应用和发展。文章首先概述了视觉中的序列表示和建模基础知识,随后根据表示策略将视觉自回归模型分为基于像素、标记和尺度的三类框架,并探讨其与生成模型的关系。文章详细阐述了自回归模型在图像、视频、3D及多模态生成等多方面的应用,列举了约250篇参考文献,并讨论了其在新兴领域的潜力和面临的挑战。此外,文章还建立了一个GitHub存储库以整理相关论文,促进了学术合作与知识传播。论文链接:https://arxiv.org/abs/2411.05902
52 1
【论文专辑】2024年大模型推理优化论文精选第六期
本文整理了 OSDI 2024 和 SOSP 2024 中与大语言模型(LLM)推理优化相关的10篇论文,涵盖 Parrot、ServerlessLLM、dLoRA 等系统,提出的技术如 Chunked Prefill、Prefix-Caching、P/D分离等已被 vLLM 和 TensorRT-LLM 等主流推理引擎采用。这些研究解决了 LLM 推理中的冷启动延迟、资源分配、KV 缓存管理等问题,提升了推理性能和资源利用率。CodeFuse推理优化项目地址https://github.com/codefuse-ai/EasyDeploy
527 2
AI计算机视觉笔记十八:Swin Transformer目标检测环境搭建
本文详细记录了Swin Transformer在AutoDL平台上的环境搭建与训练过程。作者从租用GPU实例开始,逐步介绍了虚拟环境的创建、PyTorch安装、mmcv及mmdetection的配置,并解决了安装过程中遇到的各种问题,如cython版本冲突等。最后,通过修改代码实现目标检测结果的保存。如需了解更多细节或获取完整代码,请联系作者。原文链接:[原文链接](请在此处插入原文链接)。
AI计算机视觉笔记二十五:ResNet50训练部署教程
该项目旨在训练ResNet50模型并将其部署到RK3568开发板上。首先介绍了ResNet50网络,该网络由何恺明等人于2015年提出,解决了传统卷积神经网络中的退化问题。项目使用车辆分类数据集进行训练,并提供了数据集下载链接。环境搭建部分详细描述了虚拟环境的创建和所需库的安装。训练过程中,通过`train.py`脚本进行了15轮训练,并可视化了训练和测试结果。最后,项目提供了将模型转换为ONNX和PT格式的方法,以便在RK3568上部署。
500篇论文!最全代码大模型综述来袭
11月14日,蚂蚁集团联合上海交通大学发布55页代码大模型综述,覆盖超过50个模型、30个下游任务、500篇参考文献,全方位总结大语言模型在代码相关应用中的最新进展与挑战。
1570 0
LeCun视觉世界模型论文,揭示AI学习物理世界的关键
【2月更文挑战第16天】LeCun视觉世界模型论文,揭示AI学习物理世界的关键
114 2
LeCun视觉世界模型论文,揭示AI学习物理世界的关键
MLLM首篇综述 | 一文全览多模态大模型的前世、今生和未来
MLLM首篇综述 | 一文全览多模态大模型的前世、今生和未来
3349 0
逐步揭开模型面纱!首篇深度视觉建模中的可解释AI综述
深度视觉模型在高风险领域有着广泛的应用。因此它们的黑匣子性质目前吸引了研究界的极大兴趣。论文在《可解释的人工智能》中进行了第一次调查,重点是解释深度视觉模型的方法和指标。涵盖了最新技术的里程碑式贡献,论文不仅提供了现有技术的分类组织,还挖掘了一系列评估指标,并将其作为模型解释的不同特性的衡量标准进行整理。在深入讨论当前趋势的同时,论文还讨论了这一研究方向的挑战和未来途径。
逐步揭开模型面纱!首篇深度视觉建模中的可解释AI综述
AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等