ViT模型的出现标志着Transformer架构在计算机视觉中的成功应用

简介: ViT模型的出现标志着Transformer架构在计算机视觉中的成功应用

ViT模型的出现标志着Transformer架构在计算机视觉中的成功应用,以下是一个简要的实战与进阶解析:

 

### 实战:使用ViT进行图像分类

 

#### 步骤概述:

 

1. **准备数据**:

  - 首先,准备一个适当的图像分类数据集,如ImageNet,CIFAR-10等。确保数据集包含标签,用于监督学习。

 

2. **加载和预处理数据**:

  - 使用Python的图像处理库(如PIL)加载图像,并进行预处理,例如将图像缩放到模型所需的大小(通常为224x224或者384x384)。

 

3. **加载预训练的ViT模型**:

  - 在PyTorch或TensorFlow中,可以使用Hugging Face Transformers库或官方的模型库来加载预训练的ViT模型。常用的预训练模型包括ViT-B/32、ViT-L/16等,选择适合任务和资源限制的模型。

 

4. **微调ViT模型**:

  - 将加载的ViT模型进行微调以适应特定的图像分类任务。微调通常包括解冻最后几层,或者使用较小的学习率调整整个模型的权重。

 

5. **训练和评估模型**:

  - 使用训练集训练ViT模型,并在验证集上进行评估。监控模型在训练集和验证集上的准确率、损失值等指标。

 

6. **模型调优和测试**:

  - 根据验证集的表现调整超参数(如学习率、批量大小等),最终在测试集上评估模型的性能。

 

#### 进阶:ViT模型的特点和优势

 

- **全局感知**:ViT模型通过自注意力机制(self-attention)实现对整个图像的全局感知,而不是像传统卷积神经网络(CNN)一样依赖于局部滑动窗口。

 

- **可扩展性**:ViT模型在处理不同大小的图像时具有较好的可扩展性,只需微调输入和输出的层即可适应不同的图像尺寸。

 

- **适应多任务学习**:由于Transformer的结构和对比学习的特性,ViT模型可以轻松地扩展到多任务学习或零样本学习(zero-shot learning)等场景。

 

- **预训练和微调**:ViT模型在大规模图像数据上进行预训练,然后通过微调适应特定任务,这种方法使得模型能够更快速地收敛和适应新数据。

 

 

代码示例

import tensorflow as tf
from tensorflow.keras import layers, models, initializers
import numpy as np
 
 
class PatchEmbedding(layers.Layer):
    def __init__(self, patch_size, num_patches, embed_dim):
        super(PatchEmbedding, self).__init__()
        self.num_patches = num_patches
        self.proj = layers.Dense(embed_dim)
        self.cls_token = self.add_weight("cls_token", shape=[1, 1, embed_dim], initializer=initializers.Zeros())
        self.pos_embed = self.add_weight("pos_embed", shape=[1, num_patches + 1, embed_dim], initializer=initializers.Zeros())
 
    def call(self, x):
        batch_size, height, width, channels = x.shape
        patch_size_h, patch_size_w = height // self.num_patches, width // self.num_patches
        x = tf.image.extract_patches(x, sizes=[1, patch_size_h, patch_size_w, 1], strides=[1, patch_size_h, patch_size_w, 1], rates=[1, 1, 1, 1], padding='VALID')
        x = tf.reshape(x, [batch_size, -1, patch_size_h * patch_size_w * channels])
        x = self.proj(x)
 
        cls_tokens = tf.broadcast_to(self.cls_token, [batch_size, 1, self.proj.units])
        x = tf.concat([cls_tokens, x], axis=1)
        x += self.pos_embed
        return x
 
 
class MultiHeadSelfAttention(layers.Layer):
    def __init__(self, embed_dim, num_heads):
        super(MultiHeadSelfAttention, self).__init__()
        self.embed_dim = embed_dim
        self.num_heads = num_heads
        self.proj_qkv = layers.Dense(3 * embed_dim)
        self.proj_out = layers.Dense(embed_dim)
 
    def call(self, x):
        batch_size, num_patches, embed_dim = x.shape
        qkv = self.proj_qkv(x)
        q, k, v = tf.split(qkv, 3, axis=-1)
        q = self.split_heads(q)
        k = self.split_heads(k)
        v = self.split_heads(v)
        attention_scores = tf.einsum('bhqd,bhkd->bhqk', q, k) / tf.math.sqrt(float(embed_dim))
        attention_weights = tf.nn.softmax(attention_scores, axis=-1)
        attention_output = tf.einsum('bhqk,bhvd->bhqd', attention_weights, v)
        attention_output = self.combine_heads(attention_output)
        return self.proj_out(attention_output)
 
    def split_heads(self, x):
        batch_size, num_patches, embed_dim = x.shape
        depth = embed_dim // self.num_heads
        x = tf.reshape(x, [batch_size, num_patches, self.num_heads, depth])
        return tf.transpose(x, perm=[0, 2, 1, 3])
 
    def combine_heads(self, x):
        batch_size, num_heads, num_patches, depth = x.shape
        x = tf.transpose(x, perm=[0, 2, 1, 3])
        return tf.reshape(x, [batch_size, num_patches, num_heads * depth])
 
 
class TransformerBlock(layers.Layer):
    def __init__(self, embed_dim, num_heads, mlp_dim, dropout_rate):
        super(TransformerBlock, self).__init__()
        self.mha = MultiHeadSelfAttention(embed_dim, num_heads)
        self.mlp = models.Sequential([
            layers.Dense(mlp_dim, activation=tf.nn.gelu),
            layers.Dense(embed_dim)
        ])
        self.layernorm1 = layers.LayerNormalization(epsilon=1e-6)
        self.layernorm2 = layers.LayerNormalization(epsilon=1e-6)
        self.dropout1 = layers.Dropout(dropout_rate)
        self.dropout2 = layers.Dropout(dropout_rate)
 
    def call(self, x, training):
        attn_output = self.mha(self.layernorm1(x))
        attn_output = self.dropout1(attn_output, training=training)
        out1 = x + attn_output
        mlp_output = self.mlp(self.layernorm2(out1))
        mlp_output = self.dropout2(mlp_output, training=training)
        return out1 + mlp_output
 
 
def create_vit_model(input_shape, patch_size, num_layers, num_patches, embed_dim, num_heads, mlp_dim, num_classes, dropout_rate):
    inputs = layers.Input(shape=input_shape)
    x = PatchEmbedding(patch_size, num_patches, embed_dim)(inputs)
 
    for _ in range(num_layers):
        x = TransformerBlock(embed_dim, num_heads, mlp_dim, dropout_rate)(x)
 
    x = layers.LayerNormalization(epsilon=1e-6)(x)
    x = x[:, 0]
    x = layers.Dense(num_classes)(x)
 
    model = models.Model(inputs=inputs, outputs=x)
    return model
 
 
# 超参数
input_shape = (224, 224, 3)
patch_size = 16
num_layers = 12
num_patches = (input_shape[0] // patch_size) * (input_shape[1] // patch_size)
embed_dim = 768
num_heads = 12
mlp_dim = 3072
num_classes = 10
dropout_rate = 0.1
 
vit_model = create_vit_model(input_shape, patch_size, num_layers, num_patches, embed_dim, num_heads, mlp_dim, num_classes, dropout_rate)
vit_model.compile(optimizer='adam', loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True), metrics=['accuracy'])
 
vit_model.summary()

### 结论

 

ViT作为一种新兴的计算机视觉模型,不仅仅在图像分类任务上表现出色,还为未来的多模态任务(如图像描述生成、视觉问答等)提供了新的思路和可能性。随着对Transformer架构的理解深入和计算资源的增加,ViT模型及其衍生变体有望在更广泛的视觉任务中发挥重要作用。

目录
相关文章
|
7天前
|
机器学习/深度学习 计算机视觉 iOS开发
RT-DETR改进策略【模型轻量化】| 替换骨干网络 CVPR-2024 RepViT 轻量级的Vision Transformers架构
RT-DETR改进策略【模型轻量化】| 替换骨干网络 CVPR-2024 RepViT 轻量级的Vision Transformers架构
31 0
RT-DETR改进策略【模型轻量化】| 替换骨干网络 CVPR-2024 RepViT 轻量级的Vision Transformers架构
|
11天前
|
机器学习/深度学习 算法 文件存储
YOLOv11改进策略【模型轻量化】| MoblieNetV3:基于搜索技术和新颖架构设计的轻量型网络模型
YOLOv11改进策略【模型轻量化】| MoblieNetV3:基于搜索技术和新颖架构设计的轻量型网络模型
37 10
YOLOv11改进策略【模型轻量化】| MoblieNetV3:基于搜索技术和新颖架构设计的轻量型网络模型
|
7天前
|
机器学习/深度学习 算法 文件存储
RT-DETR改进策略【模型轻量化】| MoblieNetV3:基于搜索技术和新颖架构设计的轻量型网络模型
RT-DETR改进策略【模型轻量化】| MoblieNetV3:基于搜索技术和新颖架构设计的轻量型网络模型
19 4
RT-DETR改进策略【模型轻量化】| MoblieNetV3:基于搜索技术和新颖架构设计的轻量型网络模型
|
30天前
|
机器学习/深度学习 自然语言处理 PyTorch
深入剖析Transformer架构中的多头注意力机制
多头注意力机制(Multi-Head Attention)是Transformer模型中的核心组件,通过并行运行多个独立的注意力机制,捕捉输入序列中不同子空间的语义关联。每个“头”独立处理Query、Key和Value矩阵,经过缩放点积注意力运算后,所有头的输出被拼接并通过线性层融合,最终生成更全面的表示。多头注意力不仅增强了模型对复杂依赖关系的理解,还在自然语言处理任务如机器翻译和阅读理解中表现出色。通过多头自注意力机制,模型在同一序列内部进行多角度的注意力计算,进一步提升了表达能力和泛化性能。
|
22天前
|
自然语言处理 算法 JavaScript
面向长文本的多模型协作摘要架构:多LLM文本摘要方法
多LLM摘要框架通过生成和评估两个步骤处理长文档,支持集中式和分散式两种策略。每个LLM独立生成文本摘要,集中式方法由单一LLM评估并选择最佳摘要,而分散式方法则由多个LLM共同评估,达成共识。论文提出两阶段流程:先分块摘要,再汇总生成最终摘要。实验结果显示,多LLM框架显著优于单LLM基准,性能提升最高达3倍,且仅需少量LLM和一轮生成评估即可获得显著效果。
56 10
面向长文本的多模型协作摘要架构:多LLM文本摘要方法
|
24天前
|
机器学习/深度学习 人工智能 NoSQL
记忆层增强的 Transformer 架构:通过可训练键值存储提升 LLM 性能的创新方法
Meta研究团队开发的记忆层技术通过替换Transformer中的前馈网络(FFN),显著提升了大语言模型的性能。记忆层使用可训练的固定键值对,规模达百万级别,仅计算最相似的前k个键值,优化了计算效率。实验显示,记忆层使模型在事实准确性上提升超100%,且在代码生成和通用知识领域表现优异,媲美4倍计算资源训练的传统模型。这一创新对下一代AI架构的发展具有重要意义。
49 11
记忆层增强的 Transformer 架构:通过可训练键值存储提升 LLM 性能的创新方法
|
26天前
|
机器学习/深度学习 人工智能 并行计算
Titans:谷歌新型神经记忆架构,突破 Transformer 长序列处理的瓶颈
Titans 是谷歌推出的新型神经网络架构,通过神经长期记忆模块突破 Transformer 在处理长序列数据时的瓶颈,支持并行计算,显著提升训练效率。
92 5
Titans:谷歌新型神经记忆架构,突破 Transformer 长序列处理的瓶颈
|
11天前
|
机器学习/深度学习 计算机视觉 iOS开发
YOLOv11改进策略【模型轻量化】| 替换骨干网络 CVPR-2024 RepViT 轻量级的Vision Transformers架构
YOLOv11改进策略【模型轻量化】| 替换骨干网络 CVPR-2024 RepViT 轻量级的Vision Transformers架构
53 12
|
1月前
|
机器学习/深度学习 编解码 vr&ar
NeurIPS 2024最佳论文,扩散模型的创新替代:基于多尺度预测的视觉自回归架构
本文详细解读NeurIPS 2024最佳论文《视觉自回归建模:基于下一尺度预测的可扩展图像生成》。该研究提出VAR模型,通过多尺度token图和VAR Transformer结构,实现高效、高质量的图像生成,解决了传统自回归模型在二维结构信息、泛化能力和计算效率上的局限。实验表明,VAR在图像质量和速度上超越现有扩散模型,并展示出良好的扩展性和零样本泛化能力。未来研究将聚焦于文本引导生成和视频生成等方向。
160 8
NeurIPS 2024最佳论文,扩散模型的创新替代:基于多尺度预测的视觉自回归架构
|
27天前
|
搜索推荐 架构师 数据挖掘
架构实操:画好一张业务模型图
本文以SDK设计的角度分析了如何构建一张属于SDK的各个业务的模型图。