Python装饰器是高阶函数,用于在不修改代码的情况下扩展或修改函数行为。它们提供可重用性、模块化和无侵入性的功能增强。

简介: 【6月更文挑战第20天】Python装饰器是高阶函数,用于在不修改代码的情况下扩展或修改函数行为。它们提供可重用性、模块化和无侵入性的功能增强。例如,`@simple_decorator` 包装`my_function`,在调用前后添加额外操作。装饰器还能接受参数,如`@logged("INFO", "msg")`,允许动态定制功能。

装饰器(Decorator)是 Python 中一种强大的工具,它允许我们在不修改源代码的情况下扩展或修改函数、类等对象的行为。装饰器本质上是一个接收一个函数作为参数并返回一个新的函数的高阶函数。

功能:

  1. 可重用性:装饰器提供了在多个函数上应用相同行为的一种方式,比如添加日志、性能分析、权限控制等。
  2. 模块化:通过将装饰器定义为独立的函数或类,可以将相关的功能封装在一起,提高代码的组织性和可读性。
  3. 无侵入性:装饰器不会改变原始函数的名称和元信息,对调用者来说透明。

用法:

装饰器的语法糖使得使用它们变得非常直观和简洁。以下是装饰器的基本用法:

# 定义一个简单的装饰器
def simple_decorator(func):
    def wrapper(*args, **kwargs):
        print("Before function call")
        result = func(*args, **kwargs)
        print("After function call")
        return result
    return wrapper

# 使用装饰器来包装函数
@simple_decorator
def my_function():
    print("Function body")

# 调用函数
my_function()

在这个例子中,simple_decorator 是一个装饰器函数,它接收一个函数 func 作为参数,并返回一个新的函数 wrapper。当我们在 my_function 上使用 @simple_decorator 装饰器时,实际上是用 wrapper 函数替换了原来的 my_function。因此,当我们调用 my_function() 时,实际上执行的是 wrapper(),这会导致在调用前后打印出相应的消息。

除了这个基本的用法,装饰器还可以接受参数,以便提供更灵活的功能。例如,下面是一个带有参数的装饰器示例:

from functools import wraps

def logged(level, message=""):
    def decorator(func):
        @wraps(func)
        def wrapper(*args, **kwargs):
            print(f"{level}: {message} - Before function call")
            result = func(*args, **kwargs)
            print(f"{level}: {message} - After function call")
            return result
        return wrapper
    return decorator

@logged("INFO", "Performing calculation")
def calculate(x, y):
    return x + y

result = calculate(3, 4)
print(result)  # 输出:
# INFO: Performing calculation - Before function call
# 7
# INFO: Performing calculation - After function call

在这个例子中,logged 装饰器接受两个参数 levelmessage,并在装饰函数时传入这些值。这样,我们可以在不同的地方使用同一个装饰器,但可以根据需要定制其行为。

相关文章
|
2月前
|
PHP Python
Python format()函数高级字符串格式化详解
在 Python 中,字符串格式化是一个重要的主题,format() 函数作为一种灵活且强大的字符串格式化方法,被广泛应用。format() 函数不仅能实现基本的插入变量,还支持更多高级的格式化功能,包括数字格式、对齐、填充、日期时间格式、嵌套字段等。 今天我们将深入解析 format() 函数的高级用法,帮助你在实际编程中更高效地处理字符串格式化。
207 0
|
2月前
|
索引 Python 容器
[oeasy]python096_列表_计数函数_count
本教程详细介绍了Python中列表的计数方法`count`,包括其基本用法、与`len`函数的区别,以及如何结合索引操作查找和删除特定元素。同时探讨了字符串对象的`count`方法,并通过实例演示了如何统计字符出现次数。
49 7
|
2月前
|
机器学习/深度学习 数据处理 索引
Python内置函数:面试通关的49个秘密武器
本文精选49个Python高频面试内置函数,涵盖数值处理、类型转换、序列操作、字典集合、函数式编程及高级特性,结合真实代码案例解析底层逻辑与应用场景,助你提升开发效率,轻松应对技术面试。
55 1
|
1月前
|
数据采集 索引 Python
Python Slice函数使用教程 - 详解与示例 | Python切片操作指南
Python中的`slice()`函数用于创建切片对象,以便对序列(如列表、字符串、元组)进行高效切片操作。它支持指定起始索引、结束索引和步长,提升代码可读性和灵活性。
|
6月前
|
机器学习/深度学习 存储 设计模式
Python 高级编程与实战:深入理解性能优化与调试技巧
本文深入探讨了Python的性能优化与调试技巧,涵盖profiling、caching、Cython等优化工具,以及pdb、logging、assert等调试方法。通过实战项目,如优化斐波那契数列计算和调试Web应用,帮助读者掌握这些技术,提升编程效率。附有进一步学习资源,助力读者深入学习。
|
3月前
|
Python
Python编程基石:整型、浮点、字符串与布尔值完全解读
本文介绍了Python中的四种基本数据类型:整型(int)、浮点型(float)、字符串(str)和布尔型(bool)。整型表示无大小限制的整数,支持各类运算;浮点型遵循IEEE 754标准,需注意精度问题;字符串是不可变序列,支持多种操作与方法;布尔型仅有True和False两个值,可与其他类型转换。掌握这些类型及其转换规则是Python编程的基础。
205 33
|
2月前
|
数据采集 分布式计算 大数据
不会Python,还敢说搞大数据?一文带你入门大数据编程的“硬核”真相
不会Python,还敢说搞大数据?一文带你入门大数据编程的“硬核”真相
76 1
|
3月前
|
设计模式 安全 Python
Python编程精进:正则表达式
正则表达式是一种强大的文本处理工具,用于搜索、匹配和提取模式。本文介绍了正则表达式的语法基础,如`\d`、`\w`等符号,并通过实例展示其在匹配电子邮件、验证电话号码、处理日期格式等场景中的应用。同时,文章提醒用户注意性能、编码、安全性等问题,避免常见错误,如特殊字符转义不当、量词使用错误等。掌握正则表达式能显著提升文本处理效率,但需结合实际需求谨慎设计模式。
134 2
|
4月前
|
数据采集 安全 BI
用Python编程基础提升工作效率
一、文件处理整明白了,少加两小时班 (敲暖气管子)领导让整理100个Excel表?手都干抽筋儿了?Python就跟铲雪车似的,哗哗给你整利索!
113 11
|
6月前
|
人工智能 Java 数据安全/隐私保护
[oeasy]python081_ai编程最佳实践_ai辅助编程_提出要求_解决问题
本文介绍了如何利用AI辅助编程解决实际问题,以猫屎咖啡的购买为例,逐步实现将购买斤数换算成人民币金额的功能。文章强调了与AI协作时的三个要点:1) 去除无关信息,聚焦目标;2) 将复杂任务拆解为小步骤,逐步完成;3) 巩固已有成果后再推进。最终代码实现了输入验证、单位转换和价格计算,并保留两位小数。总结指出,在AI时代,人类负责明确目标、拆分任务和确认结果,AI则负责生成代码、解释含义和提供优化建议,编程不会被取代,而是会更广泛地融入各领域。
184 28

热门文章

最新文章

推荐镜像

更多