【python工具】WebP格式转成JPG、PNG和JPEG

简介: 平时在网上搜索图片,另存为时常常遇到 WebP 格式,而非常见的 JPG、PNG、JPEG 格式,所以以此文记录一下WebP的读取和转换方法,希望对大家有所帮助!🥸

平时在网上搜索图片,另存为时常常遇到 WebP 格式,而非常见的 JPG、PNG、JPEG 格式,所以以此文记录一下WebP的读取和转换方法,希望对大家有所帮助!🥸

为什么在网页上常常搜到的图片是WebP格式?🤔🤔

WebP的高效属性

体积小,加载迅速:WebP 的核心优势在于其高压缩率。与 JPEG 相比,在保证相似视觉质量的前提下,WebP 能让文件大小减少约 25%-34%。这一优势无疑大大提升了网页加载速度,给用户带来了更流畅的体验。无论是浏览图片丰富的网页,还是快速加载包含大量图片的内容。

WebP格式的特点🛠️

结构差异:WebP源自VP8视频编解码器,其结构设计包含了帧内预测编码、有损与无损压缩机制,以及算术编码等先进算法。相比之下,PNG是一种无损图像格式,使用 zlib 压缩算法,支持透明度但缺乏高效的有损压缩手段。WebP的这种混合特性,使其在图像质量和文件大小之间找到了更佳平衡点。

透明度处理:WebP支持透明度(alpha通道),但采用了更高效的编码方式来处理透明区域,这是两者在透明度处理上的一大区别。

Python如何处理WebP格式📖

直接读取与图像处理

我们可以使用图像处理库Pillow,读取、处理WebP图像:

安装Pillow

首先,安装Pillow库:

pip install Pillow

读取WebP图像

from PIL import Image

#打开WebP文件
image = Image.open('example.webp')
#显示图像
image.show()

图像处理示例

Pillow支持各种图像处理操作,例如调整大小、旋转、滤镜应用等。以下是一个简单的图像尺寸调整示例:

# 调整图像大小并保存
resized_image = image.resize((800, 600))
resized_image.save('example_resized.webp', format='WEBP')

WebP转换成其他格式

我们可以使用pillow库将WebP转换为JPEG、PNG等格式:

# 将WebP转换为JPEG
image.save('example.jpg', format='JPEG')

# 将WebP转换为PNG
image.save('example.png', format='PNG')

只需更改.save()方法中的format参数,即可实现格式间的转换。

相关文章
|
3天前
|
测试技术 数据库 Python
Python装饰器实战:打造高效性能计时工具
在数据分析中,处理大规模数据时,分析代码性能至关重要。本文介绍如何使用Python装饰器实现性能计时工具,在不改变现有代码的基础上,方便快速地测试函数执行时间。该方法具有侵入性小、复用性强、灵活度高等优点,有助于快速发现性能瓶颈并优化代码。通过设置循环次数参数,可以更准确地评估函数的平均执行时间,提升开发效率。
75 61
Python装饰器实战:打造高效性能计时工具
|
8天前
|
数据可视化 算法 数据挖掘
Python时间序列分析工具Aeon使用指南
**Aeon** 是一个遵循 scikit-learn API 风格的开源 Python 库,专注于时间序列处理。它提供了分类、回归、聚类、预测建模和数据预处理等功能模块,支持多种算法和自定义距离度量。Aeon 活跃开发并持续更新至2024年,与 pandas 1.4.0 版本兼容,内置可视化工具,适合数据探索和基础分析任务。尽管在高级功能和性能优化方面有提升空间,但其简洁的 API 和完整的基础功能使其成为时间序列分析的有效工具。
60 37
Python时间序列分析工具Aeon使用指南
|
14天前
|
存储 算法 Serverless
剖析文件共享工具背后的Python哈希表算法奥秘
在数字化时代,文件共享工具不可或缺。哈希表算法通过将文件名或哈希值映射到存储位置,实现快速检索与高效管理。Python中的哈希表可用于创建简易文件索引,支持快速插入和查找文件路径。哈希表不仅提升了文件定位速度,还优化了存储管理和多节点数据一致性,确保文件共享工具高效运行,满足多用户并发需求,推动文件共享领域向更高效、便捷的方向发展。
|
1月前
|
数据可视化 编译器 Python
Manim:数学可视化的强大工具 | python小知识
Manim(Manim Community Edition)是由3Blue1Brown的Grant Sanderson开发的数学动画引擎,专为数学和科学可视化设计。它结合了Python的灵活性与LaTeX的精确性,支持多领域的内容展示,能生成清晰、精确的数学动画,广泛应用于教育视频制作。安装简单,入门容易,适合教育工作者和编程爱好者使用。
403 7
|
1月前
|
Python
Python格式
Python格式
28 5
|
2月前
|
JavaScript 前端开发 开发者
探索 DrissionPage: 强大的Python网页自动化工具
DrissionPage 是一个基于 Python 的网页自动化工具,结合了浏览器自动化的便利性和 requests 库的高效率。它提供三种页面对象:ChromiumPage、WebPage 和 SessionPage,分别适用于不同的使用场景,帮助开发者高效完成网页自动化任务。
289 4
|
2月前
|
开发者 Python
探索Python中的列表推导式:简洁而强大的工具
【10月更文挑战第41天】 在编程的世界中,效率与简洁是永恒的追求。本文将深入探讨Python编程语言中一个独特且强大的特性——列表推导式(List Comprehension)。我们将通过实际代码示例,展示如何利用这一工具简化代码、提升性能,并解决常见编程问题。无论你是初学者还是资深开发者,掌握列表推导式都将使你的Python之旅更加顺畅。
|
2月前
|
JSON 数据格式 索引
Python中序列化/反序列化JSON格式的数据
【11月更文挑战第4天】本文介绍了 Python 中使用 `json` 模块进行序列化和反序列化的操作。序列化是指将 Python 对象(如字典、列表)转换为 JSON 字符串,主要使用 `json.dumps` 方法。示例包括基本的字典和列表序列化,以及自定义类的序列化。反序列化则是将 JSON 字符串转换回 Python 对象,使用 `json.loads` 方法。文中还提供了具体的代码示例,展示了如何处理不同类型的 Python 对象。
|
3月前
|
数据采集 数据可视化 数据挖掘
R语言与Python:比较两种数据分析工具
R语言和Python是目前最流行的两种数据分析工具。本文将对这两种工具进行比较,包括它们的历史、特点、应用场景、社区支持、学习资源、性能等方面,以帮助读者更好地了解和选择适合自己的数据分析工具。
75 2
|
2月前
|
C语言 Python
探索Python中的列表推导式:简洁而强大的工具
【10月更文挑战第24天】在Python编程的世界中,追求代码的简洁性和可读性是永恒的主题。列表推导式(List Comprehensions)作为Python语言的一个特色功能,提供了一种优雅且高效的方法来创建和处理列表。本文将深入探讨列表推导式的使用场景、语法结构以及如何通过它简化日常编程任务。