一步步教你用Python Selenium抓取动态网页任意行数据

本文涉及的产品
实时数仓Hologres,5000CU*H 100GB 3个月
智能开放搜索 OpenSearch行业算法版,1GB 20LCU 1个月
实时计算 Flink 版,5000CU*H 3个月
简介: 使用Python Selenium爬取动态网页,结合代理IP提升抓取效率。安装Selenium,配置代理(如亿牛云),设置User-Agent和Cookies以模拟用户行为。示例代码展示如何使用XPath提取表格数据,处理异常,并通过隐式等待确保页面加载完成。代理、模拟浏览器行为和正确配置增强爬虫性能和成功率。

爬虫代理.png

引言

在现代网络中,动态网页越来越普遍,这使得数据抓取变得更具挑战性。传统的静态网页抓取方法在处理动态内容时往往力不从心。本文将详细介绍如何使用Python Selenium抓取动态网页中的任意行数据,并结合代理IP技术以提高抓取的成功率和效率。

正文

一、环境准备

首先,确保你已安装以下工具和库:

  1. Python
  2. Selenium库
  3. Chrome浏览器及对应的ChromeDriver

使用以下命令安装Selenium库:

pip install selenium

二、代理IP配置

为避免频繁请求导致IP被封禁,本文使用亿牛云爬虫代理。请根据自己的代理信息替换相应的域名、端口、用户名和密码。

三、设置User-Agent和Cookies

模拟真实用户的浏览行为,可以增加爬虫的隐蔽性并提高数据抓取的成功率。

四、编写爬虫代码

以下是完整的代码示例:

from selenium import webdriver
from selenium.webdriver.common.by import By
from selenium.webdriver.chrome.options import Options
from selenium.webdriver.common.proxy import Proxy, ProxyType

# 配置亿牛云爬虫代理IP
proxy = Proxy()
proxy.proxy_type = ProxyType.MANUAL
proxy.http_proxy = "your_proxy_domain:your_proxy_port"  # 替换为你的代理域名和端口
proxy.ssl_proxy = "your_proxy_domain:your_proxy_port"  # 替换为你的代理域名和端口

# 配置Chrome选项
chrome_options = Options()
chrome_options.add_argument('--proxy-server=%s' % proxy.http_proxy)
chrome_options.add_argument("user-agent=your_user_agent")  # 替换为你的User-Agent
chrome_options.add_argument("--disable-blink-features=AutomationControlled")

# 初始化WebDriver
driver = webdriver.Chrome(options=chrome_options)

# 设置Cookies
cookies = {
   
   
    'name': 'your_cookie_name',  # 替换为你的Cookie名称
    'value': 'your_cookie_value',  # 替换为你的Cookie值
}
driver.get("http://example.com")  # 替换为你要访问的URL
driver.add_cookie(cookies)

# 访问目标网页
driver.get("http://example.com")  # 替换为你要抓取数据的URL

# 登录或其他操作,确保能访问到数据页面

# 等待页面加载完成
driver.implicitly_wait(10)  # 设置隐式等待时间

# 抓取任意行数据的示例
try:
    rows = driver.find_elements(By.XPATH, '//table/tbody/tr')  # 替换为你实际的行数据XPath
    for row in rows:
        columns = row.find_elements(By.TAG_NAME, 'td')
        data = [column.text for column in columns]
        print(data)
except Exception as e:
    print(f"数据抓取过程中出错: {e}")

# 关闭浏览器
driver.quit()

五、实例解释

  1. 代理配置:通过Proxy类设置HTTP和SSL代理,确保请求通过代理服务器。
  2. 浏览器选项:使用Options类添加代理、User-Agent,并禁用自动化检测特征。
  3. Cookie设置:通过add_cookie方法添加Cookie,以维持会话状态。
  4. 动态内容抓取:通过implicitly_wait方法设置隐式等待时间,确保页面完全加载后再抓取数据。
  5. 数据提取:使用find_elements方法获取表格中的行数据,并逐个提取列数据。

结论

本文详细介绍了如何使用Python Selenium抓取动态网页中的任意行数据,并结合代理IP技术提高抓取的成功率和效率。通过设置User-Agent和Cookies,我们可以模拟真实用户的浏览行为,从而提高爬虫的隐蔽性和稳定性。

相关文章
|
10天前
|
图形学 Python
SciPy 空间数据2
凸包(Convex Hull)是计算几何中的概念,指包含给定点集的所有凸集的交集。可以通过 `ConvexHull()` 方法创建凸包。示例代码展示了如何使用 `scipy` 库和 `matplotlib` 绘制给定点集的凸包。
20 1
|
11天前
|
JSON 数据格式 索引
Python中序列化/反序列化JSON格式的数据
【11月更文挑战第4天】本文介绍了 Python 中使用 `json` 模块进行序列化和反序列化的操作。序列化是指将 Python 对象(如字典、列表)转换为 JSON 字符串,主要使用 `json.dumps` 方法。示例包括基本的字典和列表序列化,以及自定义类的序列化。反序列化则是将 JSON 字符串转换回 Python 对象,使用 `json.loads` 方法。文中还提供了具体的代码示例,展示了如何处理不同类型的 Python 对象。
|
12天前
|
数据采集 Web App开发 iOS开发
如何使用 Python 语言的正则表达式进行网页数据的爬取?
使用 Python 进行网页数据爬取的步骤包括:1. 安装必要库(requests、re、bs4);2. 发送 HTTP 请求获取网页内容;3. 使用正则表达式提取数据;4. 数据清洗和处理;5. 循环遍历多个页面。通过这些步骤,可以高效地从网页中提取所需信息。
|
10天前
|
索引 Python
SciPy 空间数据1
SciPy 通过 `scipy.spatial` 模块处理空间数据,如判断点是否在边界内、计算最近点等。三角测量是通过测量角度来确定目标距离的方法。多边形的三角测量可将其分解为多个三角形,用于计算面积。Delaunay 三角剖分是一种常用方法,可以对一系列点进行三角剖分。示例代码展示了如何使用 `Delaunay()` 函数创建三角形并绘制。
20 0
|
Python
猪行天下之Python基础——2.2 标识符,基础函数,行与缩进,空语句
内容简述: 1、标识符 2、print()打印输出函数 3、input()输入函数 4、dir()函数 5、help()函数 6、type()函数 & isinstance()函数 7、行与缩进 8、pass空语句
137 0
|
5天前
|
机器学习/深度学习 人工智能 TensorFlow
人工智能浪潮下的自我修养:从Python编程入门到深度学习实践
【10月更文挑战第39天】本文旨在为初学者提供一条清晰的道路,从Python基础语法的掌握到深度学习领域的探索。我们将通过简明扼要的语言和实际代码示例,引导读者逐步构建起对人工智能技术的理解和应用能力。文章不仅涵盖Python编程的基础,还将深入探讨深度学习的核心概念、工具和实战技巧,帮助读者在AI的浪潮中找到自己的位置。
|
5天前
|
机器学习/深度学习 数据挖掘 Python
Python编程入门——从零开始构建你的第一个程序
【10月更文挑战第39天】本文将带你走进Python的世界,通过简单易懂的语言和实际的代码示例,让你快速掌握Python的基础语法。无论你是编程新手还是想学习新语言的老手,这篇文章都能为你提供有价值的信息。我们将从变量、数据类型、控制结构等基本概念入手,逐步过渡到函数、模块等高级特性,最后通过一个综合示例来巩固所学知识。让我们一起开启Python编程之旅吧!
|
5天前
|
存储 Python
Python编程入门:打造你的第一个程序
【10月更文挑战第39天】在数字时代的浪潮中,掌握编程技能如同掌握了一门新时代的语言。本文将引导你步入Python编程的奇妙世界,从零基础出发,一步步构建你的第一个程序。我们将探索编程的基本概念,通过简单示例理解变量、数据类型和控制结构,最终实现一个简单的猜数字游戏。这不仅是一段代码的旅程,更是逻辑思维和问题解决能力的锻炼之旅。准备好了吗?让我们开始吧!
|
7天前
|
设计模式 算法 搜索推荐
Python编程中的设计模式:优雅解决复杂问题的钥匙####
本文将探讨Python编程中几种核心设计模式的应用实例与优势,不涉及具体代码示例,而是聚焦于每种模式背后的设计理念、适用场景及其如何促进代码的可维护性和扩展性。通过理解这些设计模式,开发者可以更加高效地构建软件系统,实现代码复用,提升项目质量。 ####