YARN中的资源调度

简介: 【6月更文挑战第19天】YARN中的资源调度

YARN中的资源调度

YARN 通过资源调度器、资源表示模型、增量资源分配机制、层级队列管理和多种调度策略等实现资源调度。在 YARN(Yet Another Resource Negotiator)中,有效的资源调度是确保 Hadoop 集群高效运行的关键。下面将详细探讨 YARN 中的资源调度机制:

  1. 资源调度器
    • 基本架构:YARN 的资源调度器是 ResourceManager 的一个可插拔组件[^3^]。它负责整个集群资源的管理和分配,采用双层资源调度模型:第一层由 RM 将资源分配给 AM(应用程序管理器),第二层由 AM 进一步将资源分配给内部任务[^2^][^3^]。
    • 调度策略:YARN 提供了三种常用的调度器:FIFO (先进先出)、Capacity Scheduler (容量调度器) 和 Fair Scheduler (公平调度器)[^1^][^3^]。每种调度器适用于不同的场景,如 FIFO 适用于简单场景,容量调度器适用于多租户环境,公平调度器强调资源分配的公平性[^1^][^3^]。
  2. 资源表示模型
    • 节点注册:NodeManager (NM) 向 ResourceManager (RM) 注册时,会报告该节点可分配的 CPU 和内存总量[^4^]。这些值可通过配置选项设置,例如 yarn.nodemanager.resource.memory-mb 和 yarn.nodemanager.resource.cpu-vcores[^4^]。
    • 资源请求:YARN 支持丰富的资源请求语义,包括特定节点或机架上的资源请求、黑名单机制以及资源归还请求。不支持任意节点或机架上的特定资源量请求及超细粒度资源要求[^4^]。
  3. 增量资源分配机制
    • 资源保证:当单个节点的闲置资源无法满足应用需求时,YARN 采用增量资源分配机制,预留部分资源直到累计释放的空闲资源满足应用程序需求。这种机制虽然可能造成一定资源浪费,但避免了应用程序“饿死”现象[^4^]。
  4. 层级队列管理
    • 队列结构:YARN 的队列是层级关系,每个队列可以包含子队列,用户只能将任务提交到叶子队列。管理员可以配置每个队列的资源保证和使用上限,并设置严格的 ACL 列表限制提交应用程序的权限[^4^]。
  5. 调度器详解
    • FIFO:按提交顺序将应用排成一个队列,简单但不适合共享集群[^1^][^3^]。
    • Capacity Scheduler:为每个队列设定资源保证和使用上限,支持资源共享和多租户管理,适合大规模集群[^1^][^3^]。
    • Fair Scheduler:旨在为所有应用分配公平的资源,不需要预先占用资源,为所有运行的作业动态调整系统资源[^1^][^3^]。

综上所述,YARN 通过灵活的资源调度器、详细的资源表示模型和有效的增量资源分配机制,实现了强大而灵活的资源调度能力。选择适合自己需求的任务调度器并优化资源配置是提高计算效率的关键。

目录
相关文章
|
5天前
|
资源调度 分布式计算 调度
【赵渝强老师】Yarn的资源调度策略
Yarn作为资源和任务调度平台,支持多个应用程序同时运行,如MapReduce、Spark和Flink等。Yarn的资源调度方式主要包括FIFO Scheduler(先来先服务)、Capacity Scheduler(容量调度)和Fair Scheduler(公平调度)。FIFO Scheduler按任务提交顺序调度;Capacity Scheduler通过队列管理资源,支持多租户共享;Fair Scheduler则根据任务权重动态分配资源,确保公平性。
|
1月前
|
资源调度 分布式计算 大数据
大数据-111 Flink 安装部署 YARN部署模式 FlinkYARN模式申请资源、提交任务
大数据-111 Flink 安装部署 YARN部署模式 FlinkYARN模式申请资源、提交任务
87 0
|
3月前
|
图形学 数据可视化 开发者
超实用Unity Shader Graph教程:从零开始打造令人惊叹的游戏视觉特效,让你的作品瞬间高大上,附带示例代码与详细步骤解析!
【8月更文挑战第31天】Unity Shader Graph 是 Unity 引擎中的强大工具,通过可视化编程帮助开发者轻松创建复杂且炫酷的视觉效果。本文将指导你使用 Shader Graph 实现三种效果:彩虹色渐变着色器、动态光效和水波纹效果。首先确保安装最新版 Unity 并启用 Shader Graph。创建新材质和着色器图谱后,利用节点库中的预定义节点,在编辑区连接节点定义着色器行为。
240 0
|
3月前
|
资源调度 分布式计算 算法
【揭秘Yarn调度秘籍】打破资源分配的枷锁,Hadoop Yarn权重调度全攻略!
【8月更文挑战第24天】在大数据处理领域,Hadoop Yarn 是一种关键的作业调度与集群资源管理工具。它支持多种调度器以适应不同需求,默认采用FIFO调度器,但可通过引入基于权重的调度算法来提高资源利用率。该算法根据作业或用户的权重值决定资源分配比例,权重高的可获得更多计算资源,特别适合多用户共享环境。管理员需在Yarn配置文件中启用特定调度器(如CapacityScheduler),并通过设置队列权重来实现资源的动态调整。合理配置权重有助于避免资源浪费,确保集群高效运行,满足不同用户需求。
50 3
|
3月前
|
资源调度 分布式计算 Hadoop
揭秘Hadoop Yarn背后的秘密!它是如何化身‘资源大师’,让大数据处理秒变高效大戏的?
【8月更文挑战第24天】在大数据领域,Hadoop Yarn(另一种资源协调者)作为Hadoop生态的核心组件,扮演着关键角色。Yarn通过其ResourceManager、NodeManager、ApplicationMaster及Container等组件,实现了集群资源的有效管理和作业调度。当MapReduce任务提交时,Yarn不仅高效分配所需资源,还能确保任务按序执行。无论是处理Map阶段还是Reduce阶段的数据,Yarn都能优化资源配置,保障任务流畅运行。此外,Yarn还在Spark等框架中展现出灵活性,支持不同模式下的作业执行。未来,Yarn将持续助力大数据技术的发展与创新。
57 2
|
3月前
|
资源调度 分布式计算 Hadoop
揭秘Hadoop Yarn三大调度器:如何玩转资源分配,实现高效集群管理?
【8月更文挑战第24天】Hadoop YARN(Another Resource Negotiator)是一款强大的集群资源管理工具,主要负责高效分配及管理Hadoop集群中的计算资源。本文深入剖析了YARN的三种调度器:容量调度器(Capacity Scheduler)、公平调度器(Fair Scheduler)以及FIFO调度器,并通过具体的配置示例和Java代码展示了它们的工作机制。
67 2
|
3月前
|
图形学 C# 开发者
Unity粒子系统全解析:从基础设置到高级编程技巧,教你轻松玩转绚丽多彩的视觉特效,打造震撼游戏画面的终极指南
【8月更文挑战第31天】粒子系统是Unity引擎的强大功能,可创建动态视觉效果,如火焰、爆炸等。本文介绍如何在Unity中使用粒子系统,并提供示例代码。首先创建粒子系统,然后调整Emission、Shape、Color over Lifetime等模块参数,实现所需效果。此外,还可通过C#脚本实现更复杂的粒子效果,增强游戏视觉冲击力和沉浸感。
173 0
|
5月前
|
资源调度 分布式计算 安全
YARN的FIFO调度器和Capacity Scheduler调度器在资源分配上有何区别?
【6月更文挑战第20天】YARN的FIFO调度器和Capacity Scheduler调度器在资源分配上有何区别?
71 11
|
5月前
|
资源调度 分布式计算 Hadoop
YARN中的资源调度主要通过其调度器(Scheduler)实现
【6月更文挑战第20天】YARN中的资源调度主要通过其调度器(Scheduler)实现
61 5
|
4月前
|
SQL 资源调度 关系型数据库
实时计算 Flink版产品使用问题之在使用Flink on yarn模式进行内存资源调优时,如何进行优化
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。