论系统的木桶理论与性能瓶颈

简介: 论系统的木桶理论与性能瓶颈

在我们实际开发环境中,根据木桶理论,系统的最终性能取决于系统中性能表现最差的组件,因此为了提高整体系统性能,必须对系统中表现最差的组件进行优化,而不是对表现良好的组件进行优化。

根据应用的特点不同,任何计算机资源都i有可能成为系统瓶颈,其中最有可能成为瓶颈的计算资源如下。

  • ロ磁盘 IO :由于磁盘 I O 读写的速度要比内存慢很多,程序在运行过程中,如果需 要等待做盘 I O 完成,那么低效的 I O 操作会拖累整个系统。
  • 网络操作:对 网络络数据进行读写的情况与磁盘1/O类似。由于网络环境的不确定性,尤其是对互联网上数据的读写,网络操作的速度可能比本地磁盘 I / O 更慢。因此, 如不加特殊处理,也极可能成为系统瓶颈。
  • CPU :对计算资源要求较高的应用,由于其长时间、不间断地大量占用 CPU 资源,那么对 CPU
    的争夺将导致性能问题。如科学计算、3D渲染等对 CPU 需求旺盛的应用。
  • 异常:对 Java 应用来说,异常的捕获和处理是非常消耗资源的。如果程序高频率 地进行异常处理,则整体性能便会有明显下降。
  • 数据库:大部分应用程序都离不开数据库,而海量数据的读写操作可能是相当费时的。而应用程序可能需要等待数据库操作完成或者返回请求的结果集,那么缓慢的同步操作将成为系统瓶颈。
  • 锁竞争:对高并发程序来说,如果存在激烈的锁竞争,无疑是对性能极大的打。 锁竞争将会明显增加线程上下文切换的开销。而且,这些开销都是与应用需求尤关的系统开销,日自占用宝贵的 CPU 资源,却不带来任何好处。
  • 内存:一般来说,只要应用程序设计合理,内存在读写速度上不太可能成为性能瓶颈。除非应用程序进行了高频率的内存交换和扫描,但这些情况比较少见。便内存制约系统性能的最可能的情况是内存大小不足。与磁盘相比,内存的大小似乎小的可怜,这意味着应用软件只能尽可能将常用的核心数据读入内存,这在一定程度上降低了系统性能。
相关文章
|
算法 数据挖掘 数据库
priori 算法的影响因素分析| 学习笔记
快速学习 priori 算法的影响因素分析。
priori 算法的影响因素分析| 学习笔记
|
2月前
|
缓存 监控 算法
软件测试中的性能瓶颈分析与优化策略
【10月更文挑战第6天】 性能测试是确保软件系统在高负载条件下稳定运行的重要手段。本文将深入探讨性能测试的常见瓶颈,包括硬件资源、网络延迟和代码效率等问题。通过具体案例分析,我们将展示如何识别并解决这些问题,从而提升软件的整体性能。最后,文章还将分享一些实用的性能优化技巧,帮助读者在日常开发和测试中更好地应对性能挑战。
108 3
|
2月前
|
编解码 监控 固态存储
提升系统的整体性能
提升系统的整体性能
40 2
|
2月前
|
存储 安全 数据安全/隐私保护
探究现代操作系统的架构与优化策略
本文旨在深入探讨现代操作系统的核心架构及其性能优化方法。通过分析操作系统的基本组成、关键技术和面临的挑战,揭示如何通过技术手段提升系统效率和用户体验。不同于传统的技术文章摘要,这里不罗列具体研究方法和结果,而是以简明扼要的语言概述文章的核心内容和思考方向,为读者提供宏观视角和技术深度。 生成
40 3
|
7月前
|
存储 并行计算 算法
【深度挖掘Java性能调优】「底层技术原理体系」深入挖掘和分析如何提升服务的性能以及执行效率(性能三大定律)
【深度挖掘Java性能调优】「底层技术原理体系」深入挖掘和分析如何提升服务的性能以及执行效率(性能三大定律)
89 0
|
5月前
|
缓存 自然语言处理 Java
浅析JAVA日志中的性能实践与原理解释问题之减少看得见的业务开销问题如何解决
浅析JAVA日志中的性能实践与原理解释问题之减少看得见的业务开销问题如何解决
|
5月前
|
Arthas 数据采集 测试技术
性能优化思路及常用工具及手段问题之利用工具采集系统热点问题如何解决
性能优化思路及常用工具及手段问题之利用工具采集系统热点问题如何解决
|
7月前
|
存储 缓存 监控
Linux内存管理:理解正常波动背后的机制
Linux内存管理:理解正常波动背后的机制
254 0
|
Web App开发 Java Linux
【性能优化】使用Perfetto定位应用启动性能的瓶颈
本篇文章将会结合我个人对Perfetto的实际使用经历,讲解车载应用的启动时间是如何测量得到的,测量出启动时间后,我们又该如何找出其中的性能瓶颈。
1721 1
【性能优化】使用Perfetto定位应用启动性能的瓶颈
|
消息中间件 缓存 NoSQL
高并发系统深度优化
高并发系统深度优化
215 0

相关实验场景

更多