深入Node.js:实现网易云音乐数据自动化抓取

本文涉及的产品
云解析 DNS,旗舰版 1个月
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
全局流量管理 GTM,标准版 1个月
简介: 深入Node.js:实现网易云音乐数据自动化抓取

00023.png

随着互联网技术的飞速发展,数据已成为企业和个人获取信息、洞察市场趋势的重要资源。音频数据,尤其是来自流行音乐平台如网易云音乐的数据,因其丰富的用户交互和内容多样性,成为研究用户行为和市场动态的宝贵资料。本文将深入探讨如何使用Node.js技术实现网易云音乐数据的自动化抓取。
一、Node.js简介
Node.js是一个基于Chrome V8引擎的JavaScript运行环境,它允许开发者在服务器端运行JavaScript代码。Node.js的非阻塞I/O模型使其在处理大量并发连接时表现出色,非常适合构建高性能的网络应用。
二、项目准备
在开始构建网易云音乐数据抓取项目之前,我们需要准备以下工具和库:
● Node.js环境:确保已安装Node.js。
● npm(Node Package Manager):Node.js的包管理器,用于安装和管理项目依赖。
● Mongoose:一个MongoDB对象模型工具,用于操作数据库。
● Cheerio:一个服务器端的jQuery实现,用于解析HTML。
● Request或Axios:用于发送HTTP请求。
● 代理服务器:由于反爬虫机制,可能需要使用代理服务器。
三、项目结构设计
一个基本的网易云音乐数据抓取项目可能包含以下几个部分:

  1. 数据库模型设计:使用Mongoose设计音频数据的存储模型。
  2. 爬虫逻辑:编写爬取网易云音乐数据的逻辑。
  3. 数据解析:解析爬取到的HTML,提取音频信息。
  4. 数据存储:将解析得到的数据存储到MongoDB数据库。
  5. 错误处理:处理网络请求和数据解析过程中可能出现的错误。
  6. 定时任务:设置定时任务,实现数据的周期性抓取。
    四、实现步骤
    4.1 安装依赖
    首先,通过npm安装所需的库:
    npm install mongoose cheerio request axios
    4.2 设计数据库模型
    使用Mongoose设计一个音频数据模型,例如:
    const mongoose = require('mongoose');

const AudioSchema = new mongoose.Schema({
title: { type: String, required: true },
artist: { type: String, required: true },
url: { type: String, required: true },
duration: { type: Number, required: true },
});

const Audio = mongoose.model('Audio', AudioSchema);
4.3 编写爬虫逻辑
编写一个异步函数crawlAudio,用于爬取网易云音乐的数据:
const axios = require('axios');
const cheerio = require('cheerio');

// 设置代理信息
process.env.http_proxy = 'http://' + encodeURIComponent('16QMSOML') + ':' + encodeURIComponent('280651') + '@www.16yun.cn:5445';
process.env.https_proxy = process.env.http_proxy;

async function crawlAudio(url) {
try {
// 使用axios发送请求,代理配置已经在环境变量中设置
const response = await axios.get(url);
const $ = cheerio.load(response.data);
const audios = [];

// 假设Audio是之前定义的Mongoose模型
$('audio').each((index, element) => {
  const title = $(element).attr('title');
  const artist = $(element).attr('artist');
  const url = $(element).attr('src');
  const duration = $(element).attr('duration');
  audios.push({ title, artist, url, duration }); // 这里应该是一个对象,而不是Audio实例
});

// 批量保存到数据库,假设Audio.insertMany是之前定义的Mongoose模型的静态方法
await Audio.insertMany(audios);

} catch (error) {
console.error('Crawl error:', error);
}
}

// 调用函数,传入需要爬取的URL
crawlAudio('http://music.163.com/discover');
4.4 数据解析与存储
在爬虫逻辑中,使用Cheerio解析HTML,提取音频的标题、艺术家、URL和时长,然后创建Audio模型的实例,并保存到MongoDB数据库。
4.5 错误处理
在爬虫函数中添加错误处理逻辑,确保在请求失败或解析错误时能够记录错误信息,避免程序崩溃。
4.6 设置定时任务
使用Node.js的node-schedule库设置定时任务,例如每天凌晨抓取数据:
const schedule = require('node-schedule');

schedule.scheduleJob('0 0 *', function(){
crawlAudio('http://music.163.com/discover');
});
五、项目优化

  1. 代理池管理:为了应对IP被封的问题,可以引入代理池管理,动态切换代理。
  2. 分布式爬虫:对于大规模的数据抓取,可以考虑使用分布式爬虫技术。
  3. 数据清洗:对抓取的数据进行清洗,确保数据的准确性和可用性。
  4. 用户行为分析:对抓取的数据进行分析,挖掘用户行为模式和市场趋势。
相关文章
|
2月前
|
数据采集 数据可视化 数据挖掘
利用Python自动化处理Excel数据:从基础到进阶####
本文旨在为读者提供一个全面的指南,通过Python编程语言实现Excel数据的自动化处理。无论你是初学者还是有经验的开发者,本文都将帮助你掌握Pandas和openpyxl这两个强大的库,从而提升数据处理的效率和准确性。我们将从环境设置开始,逐步深入到数据读取、清洗、分析和可视化等各个环节,最终实现一个实际的自动化项目案例。 ####
296 10
|
4月前
|
数据采集 存储 JavaScript
自动化数据处理:使用Selenium与Excel打造的数据爬取管道
本文介绍了一种使用Selenium和Excel结合代理IP技术从WIPO品牌数据库(branddb.wipo.int)自动化爬取专利信息的方法。通过Selenium模拟用户操作,处理JavaScript动态加载页面,利用代理IP避免IP封禁,确保数据爬取稳定性和隐私性。爬取的数据将存储在Excel中,便于后续分析。此外,文章还详细介绍了Selenium的基本设置、代理IP配置及使用技巧,并探讨了未来可能采用的更多防反爬策略,以提升爬虫效率和稳定性。
256 4
|
2月前
|
数据采集 人工智能 自然语言处理
Midscene.js:AI 驱动的 UI 自动化测试框架,支持自然语言交互,生成可视化报告
Midscene.js 是一款基于 AI 技术的 UI 自动化测试框架,通过自然语言交互简化测试流程,支持动作执行、数据查询和页面断言,提供可视化报告,适用于多种应用场景。
510 1
Midscene.js:AI 驱动的 UI 自动化测试框架,支持自然语言交互,生成可视化报告
|
2月前
|
存储 人工智能 人机交互
PC Agent:开源 AI 电脑智能体,自动收集人机交互数据,模拟认知过程实现办公自动化
PC Agent 是上海交通大学与 GAIR 实验室联合推出的智能 AI 系统,能够模拟人类认知过程,自动化执行复杂的数字任务,如组织研究材料、起草报告等,展现了卓越的数据效率和实际应用潜力。
212 1
PC Agent:开源 AI 电脑智能体,自动收集人机交互数据,模拟认知过程实现办公自动化
|
3月前
|
数据采集
使用 Puppeteer 绕过 Captcha:实现商家数据自动化采集
本文介绍了如何使用Puppeteer结合代理IP和用户伪装技术,轻松绕过大众点评的Captcha验证,实现商家信息的高效采集。通过配置Puppeteer、设置代理和用户伪装参数、模拟人类操作等步骤,成功提取了目标页面的数据。该方法不仅提高了爬虫的稳定性和隐蔽性,还为市场研究和商业分析提供了有力支持。注意,数据采集需遵守法律法规及网站政策。
使用 Puppeteer 绕过 Captcha:实现商家数据自动化采集
|
3月前
|
数据采集 存储 监控
实现自动化数据抓取:使用Node.js操控鼠标点击与位置坐标
本文介绍了如何使用Node.js和Puppeteer实现自动化数据抓取,特别是针对新闻网站“澎湃新闻”。通过设置代理IP、User-Agent和Cookie,提高爬虫的效率和隐蔽性,避免被网站封锁。代码示例展示了如何模拟鼠标点击、键盘输入等操作,抓取并整理新闻数据,适用于需要规避IP限制和突破频率限制的场景。
184 10
|
3月前
|
数据采集 存储 JavaScript
如何使用Puppeteer和Node.js爬取大学招生数据:入门指南
本文介绍了如何使用Puppeteer和Node.js爬取大学招生数据,并通过代理IP提升爬取的稳定性和效率。Puppeteer作为一个强大的Node.js库,能够模拟真实浏览器访问,支持JavaScript渲染,适合复杂的爬取任务。文章详细讲解了安装Puppeteer、配置代理IP、实现爬虫代码的步骤,并提供了代码示例。此外,还给出了注意事项和优化建议,帮助读者高效地抓取和分析招生数据。
153 0
如何使用Puppeteer和Node.js爬取大学招生数据:入门指南
|
5月前
|
Web App开发 数据采集 JavaScript
有JavaScript动态加载的内容如何抓取
有JavaScript动态加载的内容如何抓取
|
5月前
|
存储 监控 安全
在自动化测试环境中,如何确保测试数据的安全性和隐私性
在自动化测试环境中,如何确保测试数据的安全性和隐私性
157 0