探究肺癌患者的CT图像的图像特征并构建一个诊断模型

简介: 探究肺癌患者的CT图像的图像特征并构建一个诊断模型

目标

探究肺癌患者的CT图像的图像特征并构建一个诊断模型

效果图

操作说明

代码中我以建立10张图为例,多少你自己定

准备工作:

1.准备肺癌或非肺癌每个各10张图,在本地创建一个名为“data”的文件夹,用于存放数据集。在“data”文件夹下创建两个子文件夹,分别命名为“cancer”和“non_cancer”,用于存放肺癌和非肺癌图像。将10张肺癌图像命名为“cancer_1.jpg”到“cancer_10.jpg”,并将它们放入“cancer”文件夹中。将10张非肺癌图像命名为“non_cancer_1.jpg”到“non_cancer_10.jpg”,并将它们放入“non_cancer”文件夹中。


在开始编写和执行代码之前,请确保已经安装完成以下库:

TensorFlow:用于构建和训练深度学习模型

Keras:用于快速构建和训练模型

scikit-learn:用于评估模型和数据预处理

numpy:用于数组和矩阵操作

OpenCV:用于处理和操作图像数据

matplotlib:用于可视化结果

安装命令

pip install tensorflow 
pip install keras 
pip install scikit-learn 
pip install numpy 
pip install opencv-python 
pip install matplotlib

确保在本地创建了一个名为“data”的文件夹,并在其中创建了名为“cancer”和“non_cancer”的子文件夹。

将肺癌和非肺癌图像分别放入对应的子文件夹,并确保它们的命名正确

3.然后就可以复制上txt里面的代码进行执行了(记得改代码里面路径)

注意事情:

4. 图像大小:在load_images()函数中,已将图像调整为150x150大小。您可以根据实际情况更改此尺寸,但请注意,较大的图像可能会增加计算成本和训练时间。

例如,将图像大小调整为224x224:。

5.灰度图像:如果您的图像是灰度图像,可以将图像从单通道灰度转换为3通道灰度,以适应模型。在load_images()函数中添加如下代码

代码

import os
import cv2
import numpy as np
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report, confusion_matrix
from tensorflow.keras.preprocessing.image import ImageDataGenerator


from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Conv2D, MaxPooling2D, Dropout, Flatten, Dense
from tensorflow.keras.optimizers import Adam
from tensorflow.keras.utils import to_categorical

# 加载图像并调整大小
def load_images(data_dir, img_size): #从指定目录加载图像文件,并将它们转换成统一大小
    images = []
    labels = []
    for folder in os.listdir(data_dir): #遍历指定路径下的文件夹,其中 os.listdir(data_dir) 返回指定目录中所有文件和文件夹的名称列表
        for file in os.listdir(os.path.join(data_dir, folder)):
            img_path = os.path.join(data_dir, folder, file)
            img = cv2.imread(img_path)
            img = cv2.resize(img, img_size)
            images.append(img)
            labels.append(folder)
    return np.array(images), np.array(labels)

# 构建模型
def create_model(input_shape, num_classes): #创建神经网络模型。函数接受输入数据的形状 input_shape 和分类数量 num_classes 作为参数
    model = Sequential() #将各个神经网络层按照顺序逐层叠加起来,构成一个“线性”模型
    model.add(Conv2D(32, (3, 3), activation='relu', input_shape=input_shape)) #添加了一个卷积层 Conv2D 到模型中 (3,3是滤波器大小)
    #接受输入张量(特征图),尺寸为 input_shape;
    #将每个滤波器应用于输入张量;
    #对每个输出结果应用 ReLU 非线性激活;
    #输出包括32张空间特征图通道
    model.add(MaxPooling2D(pool_size=(2, 2)))
    model.add(Dropout(0.25))
    model.add(Conv2D(64, (3, 3), activation='relu'))
    model.add(MaxPooling2D(pool_size=(2, 2)))
    model.add(Dropout(0.25))
    model.add(Flatten())
    model.add(Dense(128, activation='relu'))
    model.add(Dropout(0.5))
    model.add(Dense(num_classes, activation='softmax'))
    model.compile(optimizer=Adam(), loss='categorical_crossentropy', metrics=['accuracy'])
    #optimizer=Adam() 指定使用 Adam 优化算法;
    #loss='categorical_crossentropy' 表示采用交叉熵作为损失函数,适合多分类问题;
    #metrics=['accuracy'] 说明度量模型性能时以准确率作为衡量标准
    return model

# 主程序
def main():
    data_dir = r'F:\code_test\data'
    img_size = (150, 150)#这是图片的大小根据自己图片修改
    num_classes = 2
    batch_size = 4
    epochs = 50

    # 加载图像数据
    images, labels = load_images(data_dir, img_size)

    # 数据预处理
    images = images.astype('float32') / 255.0
    labels = (labels == 'cancer').astype(int)
    labels = to_categorical(labels, num_classes)

    # 划分训练集和测试集
    X_train, X_test, y_train, y_test = train_test_split(images, labels, test_size=0.2, random_state=42)

    # 数据增强
    datagen = ImageDataGenerator(horizontal_flip=True, vertical_flip=True)
    datagen.fit(X_train)

    # 创建模型
    model = create_model((img_size[0], img_size[1], 3), num_classes)

    # 训练模型
    history = model.fit(datagen.flow(X_train, y_train, batch_size=batch_size),
                        validation_data=(X_test, y_test),
                        steps_per_epoch=len(X_train) // batch_size,
                        epochs=epochs)

    # 评估模型
    y_pred = model.predict(X_test)
    y_pred_classes = np.argmax(y_pred, axis=1)
    y_test_classes = np.argmax(y_test, axis=1)

    print("Classification Report:")
    print(classification_report(y_test_classes, y_pred_classes))

    print("Confusion Matrix:")
    print(confusion_matrix(y_test_classes, y_pred_classes))

    # 绘制训练过程的准确率和损失曲线
    def plot_training_history(history):
        plt.figure(figsize=(12, 4))

        plt.subplot(1, 2, 1)
        plt.plot(history.history['accuracy'], label='Training Accuracy')
        plt.plot(history.history['val_accuracy'], label='Validation Accuracy')
        plt.xlabel('Epoch')
        plt.ylabel('Accuracy')
        plt.legend()

        plt.subplot(1, 2, 2)
        plt.plot(history.history['loss'], label='Training Loss')
        plt.plot(history.history['val_loss'], label='Validation Loss')
        plt.xlabel('Epoch')
        plt.ylabel('Loss')
        plt.legend()

        plt.show()

    plot_training_history(history)

if __name__ == '__main__':
    main()
相关文章
|
存储 编解码
如何将BDMV文件转换为MKV或MP4?
许多拥有蓝光光驱的用户可能在电脑上存储了一些BDMV文件。虽然这些文件提供了高质量的视频和音频,但由于其文件格式的限制,它们可能无法在某些设备上播放。因此,将BDMV文件转换为常见的MKV或MP4文件就变得非常重要。本文将介绍一种简单而有效的方法来完成这个转换过程。
2196 2
|
2月前
智谱发布GLM-4.5V,全球开源多模态推理新标杆,Day0推理微调实战教程到!
视觉语言大模型(VLM)已经成为智能系统的关键基石。随着真实世界的智能任务越来越复杂,VLM模型也亟需在基本的多模态感知之外,逐渐增强复杂任务中的推理能力,提升自身的准确性、全面性和智能化程度,使得复杂问题解决、长上下文理解、多模态智能体等智能任务成为可能。
412 0
|
存储 传感器 编解码
turtlebot3 在gazebo仿真下 通过 gmapping slam 建立二维平面地图——全过程
turtlebot3 在gazebo仿真下 通过 gmapping slam 建立二维平面地图——全过程
turtlebot3 在gazebo仿真下 通过 gmapping slam 建立二维平面地图——全过程
|
云安全 存储 安全
一文看全数据跨境合规
于9月1日正式实施的《数据安全法》再次加码数据出境安全。 基于8月27日《数据安全法》解读与阿里云三大合规方案线上直播活动,阿里云解决方案架构师锅涛分享的《数据跨境流转安全》主题内容,整理出数据出境安全的九问九答,为企业数据跨境流转送上安全锦囊。
1412 0
一文看全数据跨境合规
|
Ubuntu Linux 数据安全/隐私保护
Linux Ubuntu crontab 添加错误 提示:no crontab for root - using an empty one 888
Linux Ubuntu crontab 添加错误 提示:no crontab for root - using an empty one 888
436 3
|
11月前
|
运维 测试技术 数据库
微服务架构的缺点有哪些?
微服务架构的缺点有哪些?
508 33
|
12月前
|
JavaScript 前端开发 Serverless
前端全栈之路Deno篇:Deno2.0与Bun对比,谁更胜一筹?可能Deno目前更适合serverless业务
在前端全栈开发中,Deno 2.0 和 Bun 作为新兴的 JavaScript 运行时,各自展现了不同的优势。Deno 2.0 重视安全性和多平台兼容性,尤其是对 Windows 的良好支持和原生 TypeScript 支持;而 Bun 则以卓越的性能和简便的开发体验著称,适合快速迭代的小型项目。两者在不同场景下各具特色,Deno 更适合企业级应用和serverless,Bun 则适用于追求速度的项目。
1211 2
|
12月前
|
机器学习/深度学习 人工智能 算法
人工智能与机器学习在医疗诊断中的应用
【10月更文挑战第3天】人工智能与机器学习在医疗诊断中的应用
187 3
|
JavaScript Java 测试技术
基于springboot+vue.js+uniapp的党建信息管理系统附带文章源码部署视频讲解等
基于springboot+vue.js+uniapp的党建信息管理系统附带文章源码部署视频讲解等
117 1
|
存储 安全 数据安全/隐私保护
5款非常好用的小众软件,你值得拥有
今天为大家推荐五款不常见但好用的win10软件,它们都有着各自的特色和优势,相信你会喜欢的。
262 0