强化学习(RL)从虚拟训练到实车部署的全流程

本文涉及的产品
资源编排,不限时长
简介: 强化学习(RL)从虚拟训练到实车部署的全流程

强化学习(RL)在机器人领域的应用,尤其是结合ROSRobot Operating System)和Gazebo(机器人仿真环境),是一个非常有趣和具有挑战性的领域。下面是从虚拟训练到实车部署的全流程分析概述:

 

1. 环境设置与仿真

 

ROSGazebo的集成:

- ROSRobot Operating System):ROS提供了机器人软件开发的一套标准工具和库,支持机器人的感知、控制、导航等功能。

- Gazebo仿真环境:Gazebo是一个强大的机器人仿真工具,能够模拟机器人的物理行为、传感器反馈等,是进行虚拟训练的理想平台。

 

环境模型化:

- Gazebo中建立机器人的模型和环境:这包括定义机器人的物理特性、传感器模型(如激光雷达、摄像头等)、环境的物理特性(如障碍物、地形等)。

 

2. 强化学习算法选择与训练

 

选择合适的强化学习算法:

- 常见的算法包括深度Q网络(DQN)、深度确定性策略梯度(DDPG)、A3C(异步优势演员-评论家)等。选择算法时需要考虑环境的复杂度和机器人任务的特性。

 

在仿真环境中训练:

- 利用选定的RL算法在Gazebo仿真环境中进行训练。

- 设置适当的奖励函数来引导机器人学习任务的完成,例如导航、避障等。

 

3. 实验与调优

 

仿真实验与结果分析:

- 进行多次仿真实验,收集机器人在不同场景下的表现数据。

- 分析训练过程中的学习曲线、奖励收敛情况以及机器人的行为策略。

 

调整参数与算法:

- 根据仿真实验的结果,调整强化学习算法的参数或者选择不同的算法,以提高机器人的学习效率和任务性能。

 

4. 实车部署与测试

 

硬件平台准备:

- 将经过训练的强化学习模型部署到实际的机器人硬件平台上。

- 确保硬件平台能够支持模型的实时推理和控制。

 

实车测试与验证:

- 在真实环境中对机器人进行测试,评估其在面对真实世界的不确定性和复杂性时的表现。

- 根据测试结果反馈,可能需要进一步调整模型或者增强机器人的传感器能力。

 

 

import gym
import numpy as np
import random
from collections import defaultdict
 
# 环境初始化
env = gym.make("CartPole-v1")
 
# Q-learning参数
alpha = 0.1 # 学习率
gamma = 0.99  # 折扣因子
epsilon = 1.0  # 初始探索率
epsilon_decay = 0.995  # 探索率衰减
epsilon_min = 0.01  # 最小探索率
num_episodes = 1000  # 总训练回合数
max_steps = 200  # 每回合最大步数
 
# 初始化Q表格
Q = defaultdict(lambda: np.zeros(env.action_space.n))
 
# 将观测值离散化
def discretize_state(state, bins):
   discrete_state = []
   for i in range(len(state)):
       discrete_state.append(np.digitize(state[i], bins[i]) - 1)
   return tuple(discrete_state)
 
# 创建观察值的离散桶
state_bins = [
   np.linspace(-4.8, 4.8, 10),
   np.linspace(-4, 4, 10),
   np.linspace(-0.418, 0.418, 10),
   np.linspace(-4, 4, 10)
]
 
def select_action(state, epsilon):
   if random.uniform(0, 1) < epsilon:
       return env.action_space.sample() # 随机动作
   else:
       return np.argmax(Q[state])  # 贪婪动作
 
# 训练过程
for episode in range(num_episodes):
   state = discretize_state(env.reset(), state_bins)
   total_reward = 0
   
   for step in range(max_steps):
       action = select_action(state, epsilon)
       next_state_raw, reward, done, _ = env.step(action)
       next_state = discretize_state(next_state_raw, state_bins)
 
       best_next_action = np.argmax(Q[next_state])
       td_target = reward + gamma * Q[next_state][best_next_action]
       td_delta = td_target - Q[state][action]
       Q[state][action] += alpha * td_delta
 
       state = next_state
       total_reward += reward
 
       if done:
           break
 
   epsilon = max(epsilon_min, epsilon_decay * epsilon)
 
   print(f"Episode {episode + 1}: Total Reward = {total_reward}")
 
print("训练完成!")
 
# 测试训练后的智能体
state = discretize_state(env.reset(), state_bins)
for t in range(max_steps):
   env.render()
   action = select_action(state, epsilon=0.0)  # 使用贪婪策略
   next_state, reward, done, _ = env.step(action)
   state = discretize_state(next_state, state_bins)
   if done:
       break
 
env.close()

 

 

5. 循环迭代优化

 

持续优化与改进:

- 强化学习是一个迭代的过程,通过不断的实验、分析和改进,提升机器人在复杂环境中的智能水平和任务执行能力。

 

文档和版本管理:

- 确保记录每一阶段的实验结果、模型版本和参数设置,以便复现和比较不同版本的性能。

 

通过以上流程,将虚拟训练成功地转化为实车部署,可以有效地提高机器人系统的开发效率和性能表现,同时降低实际部署过程中的风险和成本。

相关实践学习
使用ROS创建VPC和VSwitch
本场景主要介绍如何利用阿里云资源编排服务,定义资源编排模板,实现自动化创建阿里云专有网络和交换机。
阿里云资源编排ROS使用教程
资源编排(Resource Orchestration)是一种简单易用的云计算资源管理和自动化运维服务。用户通过模板描述多个云计算资源的依赖关系、配置等,并自动完成所有资源的创建和配置,以达到自动化部署、运维等目的。编排模板同时也是一种标准化的资源和应用交付方式,并且可以随时编辑修改,使基础设施即代码(Infrastructure as Code)成为可能。 产品详情:https://www.aliyun.com/product/ros/
目录
相关文章
|
6月前
|
机器学习/深度学习 数据采集 自然语言处理
机器学习模型的部署与上线:从训练到实际应用
在机器学习中,模型训练只是整个过程的一部分。将训练好的模型部署到实际应用中,并使其稳定运行,也是非常重要的。本文将介绍机器学习模型的部署与上线过程,包括数据处理、模型选择、部署环境搭建、模型调优等方面。同时,我们也会介绍一些实际应用场景,并分享一些经验和技巧。
|
6月前
|
机器学习/深度学习 存储 算法
【轻量化网络】概述网络进行轻量化处理中的:剪枝、蒸馏、量化
【轻量化网络】概述网络进行轻量化处理中的:剪枝、蒸馏、量化
209 0
|
6月前
|
机器学习/深度学习 异构计算 AI芯片
云端开炉,线上训练,Bert-vits2-v2.2云端线上训练和推理实践(基于GoogleColab)
对于笔者这样的穷哥们来讲,GoogleColab就是黑暗中的一道光,就算有训练时长限制,也能凑合用了,要啥自行车?要饭咱也就别嫌饭馊了,本次我们基于GoogleColab在云端训练和推理Bert-vits2-v2.2项目,复刻那黑破坏神角色莉莉丝(lilith)。
云端开炉,线上训练,Bert-vits2-v2.2云端线上训练和推理实践(基于GoogleColab)
|
3月前
|
机器学习/深度学习 人工智能 负载均衡
【AI大模型】分布式训练:深入探索与实践优化
在人工智能的浩瀚宇宙中,AI大模型以其惊人的性能和广泛的应用前景,正引领着技术创新的浪潮。然而,随着模型参数的指数级增长,传统的单机训练方式已难以满足需求。分布式训练作为应对这一挑战的关键技术,正逐渐成为AI研发中的标配。
197 5
|
3月前
|
机器学习/深度学习 存储 物联网
深度学习模型的优化与部署
【8月更文第18天】随着深度学习技术的发展,模型规模变得越来越大,这对计算资源的要求也越来越高。为了能够在资源有限的边缘设备(如智能手机、物联网设备)上运行复杂的深度学习模型,我们需要采用一系列优化方法来减少模型大小和计算复杂度。本文将介绍几种常用的模型优化技术,并讨论如何在边缘设备或云端服务器上部署这些优化后的模型。
131 0
|
5月前
|
机器学习/深度学习 人工智能 算法
【机器学习】RLHF:在线方法与离线算法在大模型语言模型校准中的博弈
【机器学习】RLHF:在线方法与离线算法在大模型语言模型校准中的博弈
344 6
|
5月前
|
机器学习/深度学习 算法 TensorFlow
强化学习是一种通过与环境交互来学习最优行为策略的机器学习方法。
强化学习是一种通过与环境交互来学习最优行为策略的机器学习方法。
|
4月前
|
机器学习/深度学习 算法 Python
强化学习(Reinforcement Learning, RL)** 是一种机器学习技术,其中智能体(Agent)通过与环境(Environment)交互来学习如何执行决策以最大化累积奖励。
强化学习(Reinforcement Learning, RL)** 是一种机器学习技术,其中智能体(Agent)通过与环境(Environment)交互来学习如何执行决策以最大化累积奖励。
|
6月前
|
人工智能 搜索推荐
AIGC在学生辅助训练中的应用
AIGC在学生辅助训练中的应用
159 3
AIGC在学生辅助训练中的应用
|
自然语言处理 计算机视觉
单一ViT模型执行多模态多任务,谷歌用协同训练策略实现多个SOTA
单一ViT模型执行多模态多任务,谷歌用协同训练策略实现多个SOTA
373 0