【人工智能】第二部分:ChatGPT的架构设计和训练过程

简介: 【人工智能】第二部分:ChatGPT的架构设计和训练过程

2.1 架构设计

ChatGPT的核心架构是基于Transformer解码器。Transformer解码器主要由多个堆叠的解码器层(Decoder Layer)组成,每个层包括以下几个关键组件:

自注意力机制(Self-Attention Mechanism)

自注意力机制是解码器的核心组件之一,用于捕捉输入序列中各个单词之间的关系。通过计算查询(Query)、键(Key)和值(Value)向量之间的相似度,自注意力机制能够为每个单词分配不同的权重,反映其在当前上下文中的重要性。这一机制使得模型能够在生成过程中考虑到整个输入序列的各个部分,从而生成连贯且上下文相关的文本。

前馈神经网络(Feedforward Neural Network)

前馈神经网络由两个线性变换和一个非线性激活函数(通常是ReLU)组成。它对每个位置的表示进行非线性变换,以增强模型的表达能力。具体步骤如下:

  1. 第一层线性变换:将输入向量映射到一个更高维度的隐空间。
  2. 激活函数:应用ReLU激活函数,增加模型的非线性特性。
  1. 第二层线性变换:将激活后的向量映射回原始维度。

这种双层结构能够捕捉复杂的特征和模式,进一步提升模型的生成质量。

残差连接(Residual Connection)和层归一化(Layer Normalization)

为了缓解深层神经网络中常见的梯度消失和梯度爆炸问题,Transformer解码器引入了残差连接和层归一化技术。

  • 残差连接:在每个子层的输入和输出之间添加一个直接连接,使得输入能够跳跃式地传递到后面的层。这种连接方式不仅有助于梯度的反向传播,还能加快模型的收敛速度。
  • 层归一化:对每一层的输入进行归一化处理,使得输入在不同训练阶段保持稳定,有助于加速训练过程和提高模型的稳定性。

每个解码器层的输入是前一层的输出,经过自注意力机制、前馈神经网络、残差连接和层归一化的处理后,传递给下一层。通过多层堆叠,模型能够逐层提取和整合更加抽象和高层次的特征。


最终输出

在所有解码器层处理完毕后,模型的输出被传递到一个线性层,该层将高维表示映射到词汇表的维度。接着,通过Softmax函数计算每个单词的概率分布。这一步骤将解码器的输出转换为一个概率分布,用于预测下一个单词。整个生成过程是自回归的,即每次生成一个单词,然后将其作为输入,用于生成下一个单词。

2.2 自注意力机制详解

自注意力机制是Transformer中最关键的部分,它通过计算查询、键和值的点积来捕捉输入序列中的依赖关系。具体步骤如下:

  1. 查询、键和值的生成:输入序列通过线性变换生成查询(Q)、键(K)和值(V)矩阵。
    Q=XWQ,K=XWK,V=XWV
  2. 计算注意力权重:通过点积计算查询和键的相似度,然后除以一个缩放因子(通常是键的维度的平方根),最后通过Softmax函数将相似度转换为概率分布。

  1. 加权求和:用注意力权重对值进行加权求和,得到每个位置的注意力表示。

2.3 多头注意力机制

为了捕捉输入序列中的多种关系,Transformer引入了多头注意力机制(Multi-Head Attention)。具体来说,将查询、键和值矩阵分成多个头,每个头独立地计算注意力,然后将各头的输出拼接起来,再通过线性变换得到最终的输出。


多头注意力机制的公式如下:

MultiHead(Q,K,V)=Concat(head1,head2,…,headh)WO


其中,每个头的计算方法为:

headi=Attention(QWQi,KWKi,VWVi)

2.4 位置编码

Transformer没有循环结构,因此无法自然地捕捉序列中的位置信息。为了解决这个问题,Transformer引入了位置编码(Positional Encoding)。位置编码通过正弦和余弦函数生成,并加到输入序列的词嵌入中,使得模型能够区分序列中不同位置的单词。


位置编码的公式如下:

其中,pospospos表示位置,iii表示维度的索引,dmodeld_{model}dmodel表示词嵌入的维度。

2.5 训练过程

ChatGPT的训练过程包括两个主要阶段:预训练和微调。

2.5.1 预训练

在预训练阶段,模型在大规模的无监督文本数据上进行训练。训练目标是最大化给定上下文条件下生成下一个单词的概率。具体来说,模型通过计算预测单词与真实单词之间的交叉熵损失来进行优化。

预训练的公式如下:


其中,xtx_txt表示序列中的第ttt个单词,TTT表示序列的长度。

2.5.2 微调

在微调阶段,模型通过监督学习和强化学习在特定任务或领域的数据上进行进一步训练。监督学习使用标注数据进行训练,强化学习则通过与环境的交互,优化特定的奖励函数。

微调过程包括以下步骤:

  1. 监督学习微调:使用人工标注的数据进行监督学习,优化模型在特定任务上的性能。
  2. 强化学习微调:使用强化学习算法(如策略梯度)进行优化,通过与环境的交互,最大化奖励函数。

强化学习微调的公式如下:

其中,πθ表示模型的策略,R(x)表示奖励函数。

相关文章
|
2月前
|
机器学习/深度学习 数据采集 人工智能
揭秘!47页文档拆解苹果智能,从架构、数据到训练和优化
【8月更文挑战第23天】苹果公司发布了一份47页的研究文档,深入解析了其在智能基础语言模型领域的探索与突破。文档揭示了苹果在此领域的雄厚实力,并分享了其独特的混合架构设计,该设计融合了Transformer与RNN的优势,显著提高了模型处理序列数据的效能与表现力。然而,这种架构也带来了诸如权重平衡与资源消耗等挑战。苹果利用海量、多样的高质量数据集训练模型,但确保数据质量及处理噪声仍需克服。此外,苹果采取了自监督与无监督学习相结合的高效训练策略,以增强模型的泛化与稳健性,但仍需解决预训练任务选择及超参数调优等问题。
135 66
|
3月前
|
机器学习/深度学习 人工智能 Shell
人工智能平台PAI操作报错合集之在分布式训练过程中遇到报错,是什么原因
阿里云人工智能平台PAI是一个功能强大、易于使用的AI开发平台,旨在降低AI开发门槛,加速创新,助力企业和开发者高效构建、部署和管理人工智能应用。其中包含了一系列相互协同的产品与服务,共同构成一个完整的人工智能开发与应用生态系统。以下是对PAI产品使用合集的概述,涵盖数据处理、模型开发、训练加速、模型部署及管理等多个环节。
|
2月前
|
人工智能 API 开发工具
ChatGPT 人工智能助理 Assistant
Assistants API 让你构建定制化的AI助手,通过指令引导助手运用模型、工具和知识回应查询。核心模块包括名称、指令、模型选择(如GPT-4)、工具(如Code Interpreter)及知识检索。需注意,免费账户限制较多,建议使用付费账户以获得完整体验。可通过界面操作或Python SDK实现助手创建、线程管理及信息交互等功能。相关资源包括官方文档和体验平台。
39 0
|
24天前
|
机器学习/深度学习 人工智能 自然语言处理
AI人工智能大模型的架构演进
随着深度学习的发展,AI大模型(Large Language Models, LLMs)在自然语言处理、计算机视觉等领域取得了革命性的进展。本文将详细探讨AI大模型的架构演进,包括从Transformer的提出到GPT、BERT、T5等模型的历史演变,并探讨这些模型的技术细节及其在现代人工智能中的核心作用。
66 9
|
17天前
|
人工智能 自然语言处理 前端开发
基于ChatGPT开发人工智能服务平台
### 简介 ChatGPT 初期作为问答机器人,现已拓展出多种功能,如模拟面试及智能客服等。模拟面试功能涵盖个性化问题生成、实时反馈等;智能客服则提供全天候支持、多渠道服务等功能。借助人工智能技术,这些应用能显著提升面试准备效果及客户服务效率。 ### 智能平台的使用价值 通过自动化流程,帮助用户提升面试准备效果及提高客户服务效率。 ### 实现思路 1. **需求功能设计**:提问与接收回复。 2. **技术架构设计**:搭建整体框架。 3. **技术选型**:示例采用 `Flask + Template + HTML/CSS`。 4. **技术实现**:前端界面与后端服务实现。
36 1
|
2月前
|
人工智能
最近很火的人工智能ChatGPT可以实现“ 连续对话”机制
这篇文章介绍了人工智能ChatGPT实现连续对话机制的方法,包括如何通过传递特定的参数如conversation_id来保持对话的连续性。
最近很火的人工智能ChatGPT可以实现“ 连续对话”机制
|
2月前
|
人工智能 Java 定位技术
人工智能ChatGPT 体验案例:使用ChatGPT实现java扫雷小游戏
这篇文章通过一个使用ChatGPT实现的Java扫雷小游戏案例,展示了ChatGPT在编程领域的应用能力。文章中包含了扫雷游戏的Java代码实现,代码中初始化了雷区地图,随机放置雷,计算每个格子周围雷的数量,并提供了一个简单的文本界面与用户交互进行游戏。游戏通过控制台输入接受玩家的指令,并给出相应的反馈。
人工智能ChatGPT 体验案例:使用ChatGPT实现java扫雷小游戏
|
2月前
|
机器学习/深度学习 人工智能
清华研究登Nature,首创全前向智能光计算训练架构,戴琼海、方璐领衔
【8月更文挑战第30天】清华大学研究人员在《自然》杂志上发表了一项开创性成果,提出了一种全前向智能光计算训练架构,解决了传统光学AI方法依赖电子计算机模拟和优化的问题,实现了光学系统的自学习和自设计。该架构通过将光学系统映射到参数化神经网络中,消除了反向传播需求,展示了在多个领域的广泛应用前景,如深度光学神经网络和高分辨率散射成像等。这一成果为光学AI的发展开辟了新道路,但实际应用中仍需克服一些挑战。论文详情见:https://www.nature.com/articles/s41586-024-07687-4
30 2
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
【人工智能】深度解读 ChatGPT基本原理
ChatGPT是OpenAI开发的一种基于人工智能技术的自然语言处理工具,它代表了自然语言处理(NLP)技术的前沿进展。ChatGPT的基本原理建立在一系列先进技术和方法之上,主要包括GPT(Generative Pre-trained Transformer)模型架构、预训练与微调技术、以及可能采用的RLHF(Reinforcement Learning from Human Feedback)等高级训练策略。下面将详细解读ChatGPT的基本原理和关键技术:
58 1
|
2月前
|
机器学习/深度学习 分布式计算 Cloud Native
云原生架构下的高性能计算解决方案:利用分布式计算资源加速机器学习训练
【8月更文第19天】随着大数据和人工智能技术的发展,机器学习模型的训练数据量和复杂度都在迅速增长。传统的单机训练方式已经无法满足日益增长的计算需求。云原生架构为高性能计算提供了新的可能性,通过利用分布式计算资源,可以在短时间内完成大规模数据集的训练任务。本文将探讨如何在云原生环境下搭建高性能计算平台,并展示如何使用 PyTorch 和 TensorFlow 这样的流行框架进行分布式训练。
71 2
下一篇
无影云桌面