实时计算 Flink版操作报错合集之同步MySQL数据到另一个MySQL数据库,第一次同步后源表数据发生变化时目标表没有相应更新,且Web UI中看不到运行的任务,该怎么解决

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
简介: 在使用实时计算Flink版过程中,可能会遇到各种错误,了解这些错误的原因及解决方法对于高效排错至关重要。针对具体问题,查看Flink的日志是关键,它们通常会提供更详细的错误信息和堆栈跟踪,有助于定位问题。此外,Flink社区文档和官方论坛也是寻求帮助的好去处。以下是一些常见的操作报错及其可能的原因与解决策略。

问题一:Flink cdc3.0.1,oracle11,在源库首次插入数据的时候报错怎么办?

Flink cdc3.0.1,oracle11,在源库首次插入数据的时候报错怎么办?


参考回答:

debug看源码,改源码编译最好。


关于本问题的更多回答可点击原文查看:https://developer.aliyun.com/ask/609838



问题二:Flink CDC里这个报错一般是什么原因?

Flink CDC里这个报错一般是什么原因?


参考回答:

看一下权限。这显示是读取不到log文件。


关于本问题的更多回答可点击原文查看:https://developer.aliyun.com/ask/609835



问题三:Flink这个问题怎么解决?

Flink这个问题怎么解决?


参考回答:

看报错是nio包的,channel应该有属性可以设置的,建议看看原生的nio包API写的demo,找找灵感


关于本问题的更多回答可点击原文查看:https://developer.aliyun.com/ask/609767



问题四:使用flinkcdc同步mysql至mysql的数据,只会同步一次,修改源表后目标表没有变化

使用flinkcdc同步mysql至mysql的数据,只会同步一次,修改源表后目标表没有变化


参考回答:

这个问题可能是由于Flink CDC的快照模式导致的。在Flink CDC中,有两照模式:initial_and_latestonly_snapshot。默认情况下,Flink CDC会使用initial_and_latest模式,这意味着它会在启动时获取源表的初始快照,并在后续时刻获取最新的快照。

要解决这个问题,你可以尝试将Flink CDC的快照模式更改为only_snapshot。这样,Flink CDC只会在启动时获取源表的初始快照,而不会在后续时刻获取最新的快照。你可以通过以下代码设置快照模式:

import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.table.api.bridge.java.StreamTableEnvironment;
import org.apache.flink.table.api.DataTypes;
import org.apache.flink.table.api.Schema;
import org.apache.flink.table.api.Table;
import org.apache.flink.table.api.TableResult;
impor org.apache.flink.table.api.bridge.java.StreamTableEnvironment;
import org.apache.flink.table.catalog.mysql.MySqlCatalog;
import org.apache.flink.table.descriptors.ConnectorDescriptor;
import org.apache.flink.table.descriptors.FormatDescriptor;
import org.apache.flink.table.descriptors.SchemaDescriptor;
import org.apache.flink.table.descriptors.SourceDescriptor;
import org.apache.flink.table.descriptors.TableDescriptor;
import org.apache.flink.table.descriptors.WatermarkDescriptor;
import org.apache.flink.table.descriptors.XyzDescriptor;
import org.apache.flink.table.factories.FactoryUtil;
import org.apache.flink.table.sources.TableSource;
import org.apache.flink.table.types.DataType;
import org.apache.flink.table.types.logical.RowType;
import org.apache.flink.table.utils.TableSchemaUtils;
import org.apache.flink.table.utils.TableTestBase;
import org.apache.flink.types.Row;
public class FlinkCDCSync {
    public static void main(String[] args) throws Exception {
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        StreamTableEnvironment tableEnv = StreamTableEnvironment.create(env);
        // 创建源表描述符
        SourceDescriptor sourceDescriptor = new SourceDescriptor("mysql", "cdc", "source");
        sourceDescriptor.property("hostname", "localhost");
        sourceDescriptor.property("port", "3306");
        sourceDescriptor.property("username", "root");
        sourceDescriptor.property("password", "123456");
        sourceDescriptor.property("database-name", "test");
        sourceDescriptor.property("table-name", "source_table");
        sourceDescriptor.property("scan.startup.mode", "initial_and_latest"); // 修改为 only_snapshot
        // 注册源表
        tableEnv.connect(sourceDescriptor).withSchema().inAppendMode().registerTableSource("source_table");
        // 创建目标表描述符
        TableDescriptor targetDescriptor = TableDescriptor.forConnector("jdbc")
                .schema(new Schema()
                        .field("id", DataTypes.INT())
                        .field("name", DataTypes.STRING())
                        .field("age", DataTypes.INT()))
                .option("connector", "jdbc")
                .option("url", "jdbc:mysql://localhost:3306/test")
                .option("table-name", "target_table")
                .option("username", "root")
                .option("password", "123456")
                .build();
        // 注册目标表
        tableEnv.connect(targetDescriptor).withSchema().inAppendMode().registerTableSource("target_table");
        // 同步数据
        Table result = tableEnv.sqlQuery("SELECT * FROM source_table");
        TableResult tableResult = tableEnv.executeSql("INSERT INTO target_table SELECT * FROM source_table");
    }
}

scan.startup.mode属性设置为only_snapshot后,Flink CDC将只获取源表的初始快照,而不会在后续时刻获取最新的快照。这样,当源表发生变更时,目标表也会相应地更新。


关于本问题的更多回答可点击原文查看:https://developer.aliyun.com/ask/609008



问题五:这个时候,作业2 如果点击 无状态 启动,会全量同步mysql数据过来吗?

这个时候,作业2 如果点击 无状态 启动,会全量同步mysql数据过来吗?


参考回答:

如果作业2无状态启动,Flink不会自动进行全量同步

Flink CDC通常提供了参数来控制数据同步的行为。例如,通过设置scan.startup.mode"initial",可以指示Flink在作业启动时执行一次全量数据同步。然而,如果这个参数没有被正确设置,或者没有采取其他必要的配置措施,Flink作业在无状态启动时可能只会从K费新增的数据,而不是执行全量同步。

在你的场景中,作业1已经使用CDAS将MySQL的数据


关于本问题的更多回答可点击原文查看:https://developer.aliyun.com/ask/608126

相关实践学习
基于Hologres轻松玩转一站式实时仓库
本场景介绍如何利用阿里云MaxCompute、实时计算Flink和交互式分析服务Hologres开发离线、实时数据融合分析的数据大屏应用。
Linux入门到精通
本套课程是从入门开始的Linux学习课程,适合初学者阅读。由浅入深案例丰富,通俗易懂。主要涉及基础的系统操作以及工作中常用的各种服务软件的应用、部署和优化。即使是零基础的学员,只要能够坚持把所有章节都学完,也一定会受益匪浅。
目录
打赏
0
0
0
0
191
分享
相关文章
【赵渝强老师】在Docker中运行达梦数据库
本文介绍了在Docker容器中部署达梦数据库(DM 8)的具体步骤,包括创建文件夹、下载安装包、导入镜像、启动容器、登录数据库及查看状态等操作。同时,通过视频讲解辅助理解。文中还分析了将数据库服务容器化的潜在问题,如数据安全性、硬件资源争用、网络带宽占用和额外隔离带来的挑战,指出数据库服务在生产环境中可能不适合容器化的原因。
216 4
【赵渝强老师】在Docker中运行达梦数据库
前端的全栈之路Meteor篇(三):运行在浏览器端的NoSQL数据库副本-MiniMongo介绍及其前后端数据实时同步示例
MiniMongo 是 Meteor 框架中的客户端数据库组件,模拟了 MongoDB 的核心功能,允许前端开发者使用类似 MongoDB 的 API 进行数据操作。通过 Meteor 的数据同步机制,MiniMongo 与服务器端的 MongoDB 实现实时数据同步,确保数据一致性,支持发布/订阅模型和响应式数据源,适用于实时聊天、项目管理和协作工具等应用场景。
225 0
mysql 8.0 日期维度表生成(可运行)
mysql 8.0 日期维度表生成(可运行)
212 2
mysql 8.0 时间维度表生成(可运行)
mysql 8.0 时间维度表生成(可运行)
274 0
【Azure 应用服务】在创建Web App Service的时候,选Linux系统后无法使用Mysql in App
【Azure 应用服务】在创建Web App Service的时候,选Linux系统后无法使用Mysql in App
【Azure 应用服务】在创建Web App Service的时候,选Linux系统后无法使用Mysql in App
Redis内存管理揭秘:掌握淘汰策略,让你的数据库在高并发下也能游刃有余,守护业务稳定运行!
【8月更文挑战第22天】Redis的内存淘汰策略管理内存使用,防止溢出。主要包括:noeviction(拒绝新写入)、LRU/LFU(淘汰最少使用/最不常用数据)、RANDOM(随机淘汰)及TTL(淘汰接近过期数据)。策略选择需依据应用场景、数据特性和性能需求。可通过Redis命令行工具或配置文件进行设置。
197 2
【优秀python web设计】基于Python flask的猫眼电影可视化系统,可视化用echart,前端Layui,数据库用MySQL,包括爬虫
本文介绍了一个基于Python Flask框架、MySQL数据库和Layui前端框架的猫眼电影数据采集分析与可视化系统,该系统通过爬虫技术采集电影数据,利用数据分析库进行处理,并使用Echart进行数据的可视化展示,以提供全面、准确的电影市场分析结果。
339 4
MySQL运行在docker容器中会损失多少性能
MySQL运行在docker容器中会损失多少性能
228 0
【计算机三级数据库技术】第10章 数据库运行维护与优化--附思维导图
介绍了数据库运行维护和性能优化的基础知识,包括数据库的转储与恢复、安全性与完整性控制、性能监控与改进、重组与重构,以及数据库存储空间管理。
146 1

相关产品

  • 实时计算 Flink版
  • 推荐镜像

    更多
    AI助理

    你好,我是AI助理

    可以解答问题、推荐解决方案等

    登录插画

    登录以查看您的控制台资源

    管理云资源
    状态一览
    快捷访问