《百炼成金-大金融模型新篇章》––04.问题2:“开源模型vs商业模型”,左右互搏的自建大模型之路

简介: 百炼必定成金,新质生产力会催生新质劳动力,谨以此文抛砖引玉,希望与业内的各位朋友一同探讨如何积极拥抱并运用大模型技术,以应对和驾驭不断变化的市场环境,实现科技金融持续稳定的提质增效和创新发展,携手开启金融大模型未来新篇章。

本文来源于阿里云社区电子书《百炼成金-大金融模型新篇章》


问题 2: “开源模型 vs 商业模型”,左右互搏的自建大模型之路


在大模型选型之路上,是选择开源模型还是商业模型?开源大模型和开源软件是一回事吗?


成熟开源软件与当下开源模型区别:


1、成熟开源软件通常是技术和能力相对成熟和稳定的软件应用和系统,分享的是完整的代码库和文档,用户可以自由地对与自身业务有关的代码进行修改,一般以使用核心能力为主定制为辅,版本迭代周期相对比较慢,同时也会规定了用户使用软件的权利和限制条件。


2、当下开源模型是专注于数据科学、人工智能和相关领域,作为数据处理和分析的关键组件,正处于技术迭代的高速发展期,一般以月或季度为单位进行新版本发布,并且技术和能力持续性攀升,一般版本开源是有限的,无法按照客户业务进行深度的定制,并且全局能力一般不建议调整。


开源模型与商业模型的优势与不足:


1、开源模型:通常允许用户审查和验证模型的代码和架构,不需要支付额外的许可费用,能够通过社区迭代升级。但需要专业人才研究和业务磨合尝试,周期长见效慢,缺少专门维护和支持,不包含商业产品中的安全和稳定性,文档和易用性支持较弱,模型升级迭代周期一般6-12 个月,业务集成应用的时间会更长。我们不应该拘泥于对种类繁多参数的基础模型进行训练或微调,模型能力比对和测评,应该把更多精力放在如何让模型在业务中产生价值,因为不同的模型因训练数据的差别,业务适配能力又有不同。


2、商业模型:提供商虽然提供全面的客户支持和服务,附带明确的服务等级协议(SLA),模型迭代升级非常快,公有云以月为单位小版本迭代,线下以季度订阅更新,并提供对兼容性、稳定性和安全性的保证,能够满足金融行业的法规和遵从性要求,也提供完整的解决方案,软硬件产品的良好整合,降低业务场景落地的风险。但技术透明性较差,长期依赖特定的商业模型和平台可能导致供应商锁定,降低切换供应商的灵活性。

相关文章
|
5月前
|
存储 人工智能 自然语言处理
《百炼成金-大金融模型新篇章》––11.构建金融级AI原生的蓝图
百炼必定成金,新质生产力会催生新质劳动力,谨以此文抛砖引玉,希望与业内的各位朋友一同探讨如何积极拥抱并运用大模型技术,以应对和驾驭不断变化的市场环境,实现科技金融持续稳定的提质增效和创新发展,携手开启金融大模型未来新篇章。
148 4
|
5月前
|
机器学习/深度学习 人工智能 搜索推荐
《百炼成金-大金融模型新篇章》––09.金融级AI原生的发展
百炼必定成金,新质生产力会催生新质劳动力,谨以此文抛砖引玉,希望与业内的各位朋友一同探讨如何积极拥抱并运用大模型技术,以应对和驾驭不断变化的市场环境,实现科技金融持续稳定的提质增效和创新发展,携手开启金融大模型未来新篇章。
|
2月前
|
存储 人工智能 数据格式
总说具身智能的数据太贵,鹏城实验室开源百万规模标准化数据集
【9月更文挑战第18天】鹏城实验室提出的ARIO(All Robots In One)标准,为具身智能领域带来了统一的数据格式、丰富的感知模态及多样化的真实与模拟数据,显著提升了数据集的质量与规模,助力智能系统更好地与物理世界互动。基于此标准构建的大规模数据集包含约300万个片段,覆盖258个系列和321,064个任务,极大地推动了具身智能的研究与发展。然而,该数据集也面临着存储需求高、系统互操作性及应用场景适应性等挑战。论文详情见:http://arxiv.org/abs/2408.10899。
72 11
|
5月前
|
C++ 异构计算
《百炼成金-大金融模型新篇章》––05.问题3:“大模型vs越来越大的模型”,模型sIzE的军备竞赛
百炼必定成金,新质生产力会催生新质劳动力,谨以此文抛砖引玉,希望与业内的各位朋友一同探讨如何积极拥抱并运用大模型技术,以应对和驾驭不断变化的市场环境,实现科技金融持续稳定的提质增效和创新发展,携手开启金融大模型未来新篇章。
|
5月前
|
自然语言处理 UED C++
《百炼成金-大金融模型新篇章》––06.问题4:“大模型RAG一天入门vs365天的持续优化”,RAG系统的修行
百炼必定成金,新质生产力会催生新质劳动力,谨以此文抛砖引玉,希望与业内的各位朋友一同探讨如何积极拥抱并运用大模型技术,以应对和驾驭不断变化的市场环境,实现科技金融持续稳定的提质增效和创新发展,携手开启金融大模型未来新篇章。
|
5月前
|
人工智能 运维 搜索推荐
《百炼成金-大金融模型新篇章》––07.问题5:“杀手级通用大模型vs百花齐放专属大模型”,企业级AI应用的价值自证?
百炼必定成金,新质生产力会催生新质劳动力,谨以此文抛砖引玉,希望与业内的各位朋友一同探讨如何积极拥抱并运用大模型技术,以应对和驾驭不断变化的市场环境,实现科技金融持续稳定的提质增效和创新发展,携手开启金融大模型未来新篇章。
117 1
|
5月前
|
人工智能 自然语言处理 安全
《百炼成金-大金融模型新篇章》––10.金融级AI原生的六大要素(2)
百炼必定成金,新质生产力会催生新质劳动力,谨以此文抛砖引玉,希望与业内的各位朋友一同探讨如何积极拥抱并运用大模型技术,以应对和驾驭不断变化的市场环境,实现科技金融持续稳定的提质增效和创新发展,携手开启金融大模型未来新篇章。
126 2
|
5月前
|
人工智能 边缘计算 物联网
《百炼成金-大金融模型新篇章》––02.大模型发展的趋势(1)
百炼必定成金,新质生产力会催生新质劳动力,谨以此文抛砖引玉,希望与业内的各位朋友一同探讨如何积极拥抱并运用大模型技术,以应对和驾驭不断变化的市场环境,实现科技金融持续稳定的提质增效和创新发展,携手开启金融大模型未来新篇章。
|
5月前
|
自然语言处理 监控 搜索推荐
《百炼成金-大金融模型新篇章》––12.应用场景与技术架构选型(1)
百炼必定成金,新质生产力会催生新质劳动力,谨以此文抛砖引玉,希望与业内的各位朋友一同探讨如何积极拥抱并运用大模型技术,以应对和驾驭不断变化的市场环境,实现科技金融持续稳定的提质增效和创新发展,携手开启金融大模型未来新篇章。
107 1
|
5月前
|
数据采集 人工智能 自然语言处理
《百炼成金-大金融模型新篇章》––12.应用场景与技术架构选型(2)
百炼必定成金,新质生产力会催生新质劳动力,谨以此文抛砖引玉,希望与业内的各位朋友一同探讨如何积极拥抱并运用大模型技术,以应对和驾驭不断变化的市场环境,实现科技金融持续稳定的提质增效和创新发展,携手开启金融大模型未来新篇章。