性能监控之 JMX 监控 Docker 容器中的 Java 应用

简介: 【6月更文挑战9天】性能监控之 JMX 监控 Docker 容器中的 Java 应用

一、前言

今天在配置 docker 和 JMX 监控的时候,看到有一个细节和非容器环境中的 JMX 配置不太一样。所以在这里写一下,以备其他人查阅。

二、遇到的问题

1、问题现象

一般情况下,我们配置 JMX 只要写上下面这些参数就可以了。

以下是无密码监控时的 JMX 配置参数(有密码监控的配置和常规监控无异)

-Dcom.sun.management.jmxremote
-Dcom.sun.management.jmxremote.port=9998
-Djava.rmi.server.hostname=<serverip>
-Dcom.sun.management.jmxremote.ssl=false
-Dcom.sun.management.jmxremote.authenticate=false

但是在 docker 容器中这样配置的时候,会出现这个错误。
image.png

2、问题分析

这里就要说明一下逻辑了。为什么会这样呢?

先看 docker 环境的网络结构。

容器使用默认的网络模型,就是 bridge 模式。在这种模式下是 docker run 时做的 DNAT 规则,实现数据转发的能力。所以我们看到的网络信息是以下这样的:

docker 中的网卡信息:

[root@f627e4cb0dbc /]# ifconfig
eth0: flags=4163<UP,BROADCAST,RUNNING,MULTICAST>  mtu 1500
        inet 172.18.0.3  netmask 255.255.0.0  broadcast 0.0.0.0
        inet6 fe80::42:acff:fe12:3  prefixlen 64  scopeid 0x20<link>
        ether 02:42:ac:12:00:03  txqueuelen 0  (Ethernet)
        RX packets 366  bytes 350743 (342.5 KiB)
        RX errors 0  dropped 0  overruns 0  frame 0
        TX packets 358  bytes 32370 (31.6 KiB)
        TX errors 0  dropped 0 overruns 0  carrier 0  collisions 0

docker 中的路由信息:

[root@a2a7679f8642 /]# netstat -r
Kernel IP routing table
Destination     Gateway         Genmask         Flags   MSS Window  irtt Iface
default         gateway         0.0.0.0         UG        0 0          0 eth0
172.18.0.0      0.0.0.0         255.255.0.0     U         0 0          0 eth0
[root@a2a7679f8642 /]#

宿主机上的对应网卡信息:

docker0: flags=4163<UP,BROADCAST,RUNNING,MULTICAST>  mtu 1500
        inet 172.18.0.1  netmask 255.255.0.0  broadcast 0.0.0.0
        ether 02:42:44:5a:12:8f  txqueuelen 0  (Ethernet)
        RX packets 6691477  bytes 498130
        RX errors 0  dropped 0  overruns 0  frame 0
        TX packets 6751310  bytes 3508684363 (3.2 GiB)
        TX errors 0  dropped 0 overruns 0  carrier 0  collisions 0

宿主机上的路由信息:

[root@7dgroup ~]# netstat -r
Kernel IP routing table
Destination     Gateway         Genmask         Flags   MSS Window  irtt Iface
default         gateway         0.0.0.0         UG        0 0          0 eth0
link-local      0.0.0.0         255.255.0.0     U         0 0          0 eth0
172.17.208.0    0.0.0.0         255.255.240.0   U         0 0          0 eth0
172.18.0.0      0.0.0.0         255.255.0.0     U         0 0          0 docker0
192.168.16.0    0.0.0.0         255.255.240.0   U         0 0          0 br-676bae33ff92

所以宿主机和容器是可以直接通信的,即便端口没有映射出来。如下所示:

[root@7dgroup ~]# telnet 172.18.0.3 8080
Trying 172.18.0.3...
Connected to 172.18.0.3.
Escape character is '^]'.

另外,因为是桥接的,宿主机上还有类似 veth0b5a080 的虚拟网卡设备信息,如:

eth0b5a080: flags=4163<UP,BROADCAST,RUNNING,MULTICAST>  mtu 1500
        ether 42:c3:45:be:88:1a  txqueuelen 0  (Ethernet)
        RX packets 2715512  bytes 2462280742 (2.2 GiB)
        RX errors 0  dropped 0  overruns 0  frame 0
        TX packets 2380143  bytes 2437360499 (2.2 GiB)
        TX errors 0  dropped 0 overruns 0  carrier 0  collisions 0

这就是虚拟网卡对 veth pair,docker 容器里一个,宿主机一个。 在这种模式下,有几个容器,主机上就会有几个 veth 开头的虚拟网卡设备。

但是如果不是宿主机访问的话,肯定是不通的。如下图所示:
image.png

当我们用监控机 访问的时候,会是这样的结果:

Zees-Air-2:~ Zee$ telnet <serverip> 8080
Trying <serverip>...
telnet: connect to address <serverip>: Connection refused
telnet: Unable to connect to remote host
Zees-Air-2:~ Zee$

因为 8080 是容器开的端口,并不是宿主机开的端口,其他机器是访问不了的。 这就是为什么要把端口映射出来给远程访问的原因,映射之后的端口,就会有 NAT 规则来保证数据包可达。

查看下 NAT 规则,就知道。如下:

[root@7dgroup ~]# iptables -t nat -vnL
Chain PREROUTING (policy ACCEPT 171 packets, 9832 bytes)
    pkts bytes target     prot opt in     out     source               destination
    553K   33M DOCKER     all  --  *      *       0.0.0.0/0            0.0.0.0/0            ADDRTYPE match dst-type LOCAL

Chain INPUT (policy ACCEPT 171 packets, 9832 bytes)
    pkts bytes target     prot opt in     out     source               destination

Chain OUTPUT (policy ACCEPT 2586 packets, 156K bytes)
    pkts bytes target     prot opt in     out     source               destination
    205K   12M DOCKER     all  --  *      *       0.0.0.0/0           !60.205.104.0/22      ADDRTYPE match dst-type LOCAL
    0         0 DOCKER      all  --  *      *       0.0.0.0/0           !127.0.0.0/8          ADDRTYPE match dst-type LOCAL

Chain POSTROUTING (policy ACCEPT 2602 packets, 157K bytes)
 pkts bytes target     prot opt in     out     source               destination
 265K   16M MASQUERADE  all  --  *      !docker0  172.18.0.0/16        0.0.0.0/0
    0     0 MASQUERADE  all  --  *      !br-676bae33ff92  192.168.16.0/20      0.0.0.0/0
    0     0 MASQUERADE  tcp  --  *      *       192.168.0.4          192.168.0.4          tcp dpt:7001
    0     0 MASQUERADE  tcp  --  *      *       192.168.0.4          192.168.0.4          tcp dpt:4001
    0     0 MASQUERADE  tcp  --  *      *       192.168.0.5          192.168.0.5          tcp dpt:2375
    0     0 MASQUERADE  tcp  --  *      *       192.168.0.8          192.168.0.8          tcp dpt:8080
    0     0 MASQUERADE  tcp  --  *      *       172.18.0.4           172.18.0.4           tcp dpt:3306
    0     0 MASQUERADE  tcp  --  *      *       172.18.0.5           172.18.0.5           tcp dpt:6379
    0     0 MASQUERADE  tcp  --  *      *       172.18.0.2           172.18.0.2           tcp dpt:80
    0     0 MASQUERADE  tcp  --  *      *       172.18.0.6           172.18.0.6           tcp dpt:9997
    0     0 MASQUERADE  tcp  --  *      *       172.18.0.6           172.18.0.6           tcp dpt:9996
    0     0 MASQUERADE  tcp  --  *      *       172.18.0.6           172.18.0.6           tcp dpt:8080
    0     0 MASQUERADE  tcp  --  *      *       172.18.0.3           172.18.0.3           tcp dpt:9995
    0     0 MASQUERADE  tcp  --  *      *       172.18.0.3           172.18.0.3           tcp dpt:8080

Chain DOCKER (3 references)
    pkts bytes target  prot opt   in     out     source               destination
    159K 9544K RETURN  all  --  docker0 *       0.0.0.0/0            0.0.0.0/0
    0    0 RETURN      all  --  br-676bae33ff92 *  0.0.0.0/0            0.0.0.0/0
    1    40 DNAT       tcp  --  !docker0 *       0.0.0.0/0            0.0.0.0/0            tcp dpt:3307 to:172.18.0.4:3306
    28  1486 DNAT      tcp  --  !docker0 *       0.0.0.0/0            0.0.0.0/0            tcp dpt:6379 to:172.18.0.5:6379
    228 137K  DNAT     tcp  --  !docker0 *       0.0.0.0/0            0.0.0.0/0            tcp dpt:91 to:172.18.0.2:80
    3   192 DNAT       tcp  --  !docker0 *       0.0.0.0/0            0.0.0.0/0            tcp dpt:9997 to:172.18.0.6:9997
    0     0 DNAT       tcp  --  !docker0 *       0.0.0.0/0            0.0.0.0/0            tcp dpt:9996 to:172.18.0.6:9996
    0     0 DNAT       tcp  --  !docker0 *       0.0.0.0/0            0.0.0.0/0            tcp dpt:9002 to:172.18.0.6:8080
    12   768 DNAT      tcp  --  !docker0 *       0.0.0.0/0            0.0.0.0/0            tcp dpt:9995 to:172.18.0.3:9995
    4   256 DNAT       tcp  --  !docker0 *       0.0.0.0/0            0.0.0.0/0            tcp dpt:9004 to:172.18.0.3:8080

[root@7dgroup ~]#

我们看到了宿主机的 91 端口的数据会传给 172.18.0.2 的 80 端口。宿主机的 3307 端口会传给 172.18.0.4 的3306 端口。

啰啰嗦嗦说到这里,那和 JMX 有啥关系。苦就苦在,JMX 是这样的:
image.png
在注册时使用的是参数 jmxremote.port,然后返回一个新的端口 jmxremote.rmi.port

在调用服务时使用是参数 jmxremote.rmi.port。 前面提到了,因为 docker 在 bridge 模式下端口是要用 -p 显式指定的,不然没 NAT 规则,数据包不可达。所以在这种情况下,只能把 jmxremote.rmi.port 也暴露出去。所以必须显式指定。因为不指定的话,这个端口会随机开。随机开的端口又没 NAT 规则,所以是不通的了。

三、解决方案

所以,这种以上情况只能指定 jmxremote.rmi.port 为固定值,并暴露出去。 配置如下:

-Dcom.sun.management.jmxremote
-Dcom.sun.management.jmxremote.port=9995
-Djava.rmi.server.hostname=<serverip>
-Dcom.sun.management.jmxremote.ssl=false
-Dcom.sun.management.jmxremote.authenticate=false
-Dcom.sun.management.jmxremote.rmi.port=9995

像上面的设置就是两个都是 9995,这样是允许的,这种情况下注册和调用的端口就合并了。

再启动 docker 容器的时候,就需要这样了。

docker run -d -p 9003:8080 -p 9995:9995 --name 7dgroup-tomcat5
-e CATALINA_OPTS="-Dcom.sun.management.jmxremote \
-Dcom.sun.management.jmxremote.port=9995 \
-Djava.rmi.server.hostname=<serverip> \
-Dcom.sun.management.jmxremote.ssl=false \
-Dcom.sun.management.jmxremote.authenticate=false \
-Dcom.sun.management.jmxremote.rmi.port=9995" c375edce8dfd

然后就可以连接上 JMX 的工具了。
image.png

image.png
image.png

在有防火墙和其他的设备的网络环境中,也有可能出同样的问题。明白了JMX 的注册调用逻辑之后,就可以解决各种类似的问题了。

网络链路是做性能分析的人必须想明白的技术点,所以前面说了那么多内容。

四、总结

这里对于 JMX 工具的选择啰嗦两句。有人喜欢花哨的,有人喜欢简单的,有人喜欢黑窗口的。我觉得工具选择的时候,要看适用情况,在性能分析的时候,一定要选择合适的工具,而不是选择体现技术高超的工具。

最后留个作业:

  • 如果 docker run 中如果指定 -p 19995:9995,也就是换个端口暴露出去,其他配置都不变。JMX 工具还能连得上吗?

  • 如果 jmxremote.rmi.portjmxremote.port 不合并,并且同时把两个端口都暴露出去,其他配置都不变。JMX 工具还能连得上吗?

有兴趣的可以自己尝试下哦。

目录
相关文章
|
13天前
|
监控 NoSQL 时序数据库
《docker高级篇(大厂进阶):7.Docker容器监控之CAdvisor+InfluxDB+Granfana》包括:原生命令、是什么、compose容器编排,一套带走
《docker高级篇(大厂进阶):7.Docker容器监控之CAdvisor+InfluxDB+Granfana》包括:原生命令、是什么、compose容器编排,一套带走
142 77
|
21天前
|
监控 Docker 容器
在Docker容器中运行打包好的应用程序
在Docker容器中运行打包好的应用程序
|
5天前
|
关系型数据库 应用服务中间件 PHP
实战~如何组织一个多容器项目docker-compose
本文介绍了如何使用Docker搭建Nginx、PHP和MySQL的环境。首先启动Nginx容器并查看IP地址,接着启动Alpine容器并安装curl测试连通性。通过`--link`方式或`docker-compose`配置文件实现服务间的通信。最后展示了Nginx配置文件和PHP代码示例,验证了各服务的正常运行。
21 3
实战~如何组织一个多容器项目docker-compose
|
15天前
|
数据建模 应用服务中间件 nginx
docker替换宿主与容器的映射端口和文件路径
通过正确配置 Docker 的端口和文件路径映射,可以有效地管理容器化应用程序,确保其高效运行和数据持久性。在生产环境中,动态替换映射配置有助于灵活应对各种需求变化。以上方法和步骤提供了一种可靠且易于操作的方案,帮助您轻松管理 Docker 容器的端口和路径映射。
55 3
|
21天前
|
负载均衡 网络协议 算法
Docker容器环境中服务发现与负载均衡的技术与方法,涵盖环境变量、DNS、集中式服务发现系统等方式
本文探讨了Docker容器环境中服务发现与负载均衡的技术与方法,涵盖环境变量、DNS、集中式服务发现系统等方式,以及软件负载均衡器、云服务负载均衡、容器编排工具等实现手段,强调两者结合的重要性及面临挑战的应对措施。
49 3
|
21天前
|
存储 安全 数据安全/隐私保护
Docker 容器化应用管理更加高效,但数据安全和业务连续性成为关键。
在数字化时代,Docker 容器化应用管理更加高效,但数据安全和业务连续性成为关键。本文探讨了 Docker 应用的备份与恢复策略,涵盖备份的重要性、内容、方法及常见工具,制定备份策略,恢复流程及注意事项,并通过案例分析和未来趋势展望,强调备份与恢复在保障应用安全中的重要性。
27 2
|
21天前
|
存储 缓存 监控
Docker容器性能调优的关键技巧,涵盖CPU、内存、网络及磁盘I/O的优化策略,结合实战案例,旨在帮助读者有效提升Docker容器的性能与稳定性。
本文介绍了Docker容器性能调优的关键技巧,涵盖CPU、内存、网络及磁盘I/O的优化策略,结合实战案例,旨在帮助读者有效提升Docker容器的性能与稳定性。
54 7
|
21天前
|
存储 Prometheus 监控
Docker容器内进行应用调试与故障排除的方法与技巧,包括使用日志、进入容器检查、利用监控工具及检查配置等,旨在帮助用户有效应对应用部署中的挑战,确保应用稳定运行
本文深入探讨了在Docker容器内进行应用调试与故障排除的方法与技巧,包括使用日志、进入容器检查、利用监控工具及检查配置等,旨在帮助用户有效应对应用部署中的挑战,确保应用稳定运行。
30 5
|
21天前
|
开发框架 安全 开发者
Docker 是一种容器化技术,支持开发者将应用及其依赖打包成容器,在不同平台运行而无需修改。
Docker 是一种容器化技术,支持开发者将应用及其依赖打包成容器,在不同平台运行而无需修改。本文探讨了 Docker 在多平台应用构建与部署中的作用,包括环境一致性、依赖管理、快速构建等优势,以及部署流程和注意事项,展示了 Docker 如何简化开发与部署过程,提高效率和可移植性。
49 4
|
21天前
|
存储 安全 数据中心
Docker 容器凭借轻量级和高效的特性,成为应用部署的重要工具
Docker 容器凭借轻量级和高效的特性,成为应用部署的重要工具。本文探讨了 Docker 如何通过 Namespace 和 Cgroups 实现 CPU、内存、网络和存储资源的隔离,提高系统安全性和资源利用率,以及面临的挑战和应对策略。
37 1
下一篇
DataWorks