实时计算 Flink版产品使用问题之如何实现重启后直接跑最新的任务而不是根据checkpoint跑历史数据

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
简介: 实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。

问题一:这种场景阿里云flink引擎有计划吗?

flink 去 lookup join 一张实时写入的维表,在join不到情况下,加入缓存,然后delay retry。这种场景阿里云flink引擎有计划吗?



参考答案:

阿里云Flink引擎确实提供了一些功能来支持维表join操作的优化,但关于特定场景下“实时写入的维表在join不到时加入缓存并延迟重试”的计划,目前没有明确的信息表明阿里云Flink引擎有专门的计划针对这一特定需求进行优化或提供现成的解决方案。

在处理维表join时,Flink SQL提供了一些Hints来指定表联接策略,例如Lookup Hints,以及SHUFFLE_HASH、REPLICATED_SHUFFLE_HASH和SKEW等联接策略。这些优化可以帮助提高维表join的性能和效率。在实时数仓的场景中,维表关联是一个常见的需求,尤其是在数据流需要补齐字段时,比如将交易日志与商品维表进行关联以补全所需的维度信息。

此外,如果业务处于起步阶段或测试阶段,可以考虑预加载维表的方案,即在算子的open方法中读取维表信息并保存在内存中,然后定时同步更新。这种方法适用于维表数据量不大且更新频率不高的情况。对于更复杂的场景,可能需要结合使用多种技术和工具,如Redis等内存数据库来缓存维表数据,并通过自定义逻辑来实现延迟重试的功能。



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/601799



问题二:Flink CU有没有降价计划?

Flink CU有没有降价计划?



参考答案:

暂时没有



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/601796



问题三:Flink文档这里提到的python libraries在哪啊?

Flink文档这里提到的python libraries在哪啊?



参考答案:

是在部署python作业里面的,位置:系统概览--部署python作业。

 



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/601795



问题四:使用flink oracle cdc时,有高并发写入源表的场景,什么方法可以限制数据流的流入速度?

使用flink oracle cdc时,如果有高并发写入源表的场景,有什么方法可以限制数据流的流入速度?



参考答案:

参照JdbcSink 手搓一个。



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/601792



问题五:Flink任务怎么实现重启后直接跑最新的任务而不是去根据checkpoint跑历史数据?

Flink任务怎么实现重启后直接跑最新的任务而不是去根据checkpoint跑历史数据?



参考答案:

无状态重启。



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/601791

相关实践学习
基于Hologres轻松玩转一站式实时仓库
本场景介绍如何利用阿里云MaxCompute、实时计算Flink和交互式分析服务Hologres开发离线、实时数据融合分析的数据大屏应用。
Linux入门到精通
本套课程是从入门开始的Linux学习课程,适合初学者阅读。由浅入深案例丰富,通俗易懂。主要涉及基础的系统操作以及工作中常用的各种服务软件的应用、部署和优化。即使是零基础的学员,只要能够坚持把所有章节都学完,也一定会受益匪浅。
相关文章
|
2月前
|
存储 分布式计算 流计算
实时计算 Flash – 兼容 Flink 的新一代向量化流计算引擎
本文介绍了阿里云开源大数据团队在实时计算领域的最新成果——向量化流计算引擎Flash。文章主要内容包括:Apache Flink 成为业界流计算标准、Flash 核心技术解读、性能测试数据以及在阿里巴巴集团的落地效果。Flash 是一款完全兼容 Apache Flink 的新一代流计算引擎,通过向量化技术和 C++ 实现,大幅提升了性能和成本效益。
1373 73
实时计算 Flash – 兼容 Flink 的新一代向量化流计算引擎
|
2月前
|
存储 监控 数据处理
flink 向doris 数据库写入数据时出现背压如何排查?
本文介绍了如何确定和解决Flink任务向Doris数据库写入数据时遇到的背压问题。首先通过Flink Web UI和性能指标监控识别背压,然后从Doris数据库性能、网络连接稳定性、Flink任务数据处理逻辑及资源配置等方面排查原因,并通过分析相关日志进一步定位问题。
189 61
|
3天前
|
存储 关系型数据库 BI
实时计算UniFlow:Flink+Paimon构建流批一体实时湖仓
实时计算架构中,传统湖仓架构在数据流量管控和应用场景支持上表现良好,但在实际运营中常忽略细节,导致新问题。为解决这些问题,提出了流批一体的实时计算湖仓架构——UniFlow。该架构通过统一的流批计算引擎、存储格式(如Paimon)和Flink CDC工具,简化开发流程,降低成本,并确保数据一致性和实时性。UniFlow还引入了Flink Materialized Table,实现了声明式ETL,优化了调度和执行模式,使用户能灵活调整新鲜度与成本。最终,UniFlow不仅提高了开发和运维效率,还提供了更实时的数据支持,满足业务决策需求。
zdl
|
2月前
|
消息中间件 运维 大数据
大数据实时计算产品的对比测评:实时计算Flink版 VS 自建Flink集群
本文介绍了实时计算Flink版与自建Flink集群的对比,涵盖部署成本、性能表现、易用性和企业级能力等方面。实时计算Flink版作为全托管服务,显著降低了运维成本,提供了强大的集成能力和弹性扩展,特别适合中小型团队和业务波动大的场景。文中还提出了改进建议,并探讨了与其他产品的联动可能性。总结指出,实时计算Flink版在简化运维、降低成本和提升易用性方面表现出色,是大数据实时计算的优选方案。
zdl
170 56
|
2月前
|
SQL 运维 数据可视化
阿里云实时计算Flink版产品体验测评
阿里云实时计算Flink基于Apache Flink构建,提供一站式实时大数据分析平台,支持端到端亚秒级实时数据分析,适用于实时大屏、实时报表、实时ETL和风控监测等场景,具备高性价比、开发效率、运维管理和企业安全等优势。
|
3月前
|
数据可视化 大数据 数据处理
评测报告:实时计算Flink版产品体验
实时计算Flink版提供了丰富的文档和产品引导,帮助初学者快速上手。其强大的实时数据处理能力和多数据源支持,满足了大部分业务需求。但在高级功能、性能优化和用户界面方面仍有改进空间。建议增加更多自定义处理函数、数据可视化工具,并优化用户界面,增强社区互动,以提升整体用户体验和竞争力。
51 2
|
3月前
|
运维 搜索推荐 数据安全/隐私保护
阿里云实时计算Flink版测评报告
阿里云实时计算Flink版在用户行为分析与标签画像场景中表现出色,通过实时处理电商平台用户行为数据,生成用户兴趣偏好和标签,提升推荐系统效率。该服务具备高稳定性、低延迟、高吞吐量,支持按需计费,显著降低运维成本,提高开发效率。
89 1
|
3月前
|
运维 数据处理 Apache
数据实时计算产品对比测评报告:阿里云实时计算Flink版
数据实时计算产品对比测评报告:阿里云实时计算Flink版
|
3月前
|
运维 监控 Serverless
阿里云实时计算Flink版评测报告
阿里云实时计算Flink版是一款全托管的Serverless实时流处理服务,基于Apache Flink构建,提供企业级增值功能。本文从稳定性、性能、开发运维、安全性和成本效益等方面全面评测该产品,展示其在实时数据处理中的卓越表现和高投资回报率。
|
3月前
|
存储 运维 监控
实时计算Flink版在稳定性、性能、开发运维、安全能力等等跟其他引擎及自建Flink集群比较。
实时计算Flink版在稳定性、性能、开发运维和安全能力等方面表现出色。其自研的高性能状态存储引擎GeminiStateBackend显著提升了作业稳定性,状态管理优化使性能提升40%以上。核心性能较开源Flink提升2-3倍,资源利用率提高100%。提供一站式开发管理、自动化运维和丰富的监控告警功能,支持多语言开发和智能调优。安全方面,具备访问控制、高可用保障和全链路容错能力,确保企业级应用的安全与稳定。
54 0

相关产品

  • 实时计算 Flink版