实时计算 Flink版产品使用问题之整库从mysql同步到StarRocks里面,首次全量是否会对mysql造成大量资源消耗,导致影响业务服务

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
简介: 实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。

问题一:有用springboot框架开发flink任务的朋友吗?

有用springboot框架开发flink任务的朋友吗?



参考答案:

关于Spring Boot框架开发Flink任务,是可以的。您可以将Flink应用以微服务的方式整合进Spring Boot项目中,利用Spring Boot的便利性进行资源管理和服务部署,同时结合Flink提供的Java API编写数据处理逻辑。这样的组合能够充分利用Spring Boot生态的优点,简化服务端开发流程。



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/602590



问题二:Flink这个数据和watermark的视图,经过窗口之后,怎么理解?

Flink这个数据和watermark的视图,经过窗口之后,怎么理解?

能类似的画出来吗?



参考答案:

你可以看下水位线的定义,百度下 If you set the characteristic to IngestionTime of EventTime this will set a default watermark update interval of 200 ms. If this is not applicable for your application you should change it using #setAutoWatermarkInterval(long) ,



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/602588



问题三:咨询一个flink中,连续两个窗口的问题,window1是一个10秒的窗口,请问这是什么情况?

咨询一个flink中,连续两个窗口的问题,window1是一个10秒的窗口,window2是一个15秒的窗口,在本地测试的时候,window2窗口的数据,有时候是一个window1的数据,有时候是两个window1的数据,如果按照事件时间划分,其中一个window1的数据,应该分割给两个window2,但是看样子window1的数据触发之后,再进入window2的时候,并不是按照事件时间划分的,而是按照窗口结束时间划分的,导致window2中的数据和事件时间不符,请问这是什么情况?



参考答案:

可以参考看下 https://blog.csdn.net/u013200380/article/details/105938477



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/602587



问题四:为什么flinkcdc 监听oracle一段时间后失效了

为什么flinkcdc 监听oracle一段时间后失效了,启动的时候还是正常的,过了两天就出问题了,我是双数据源集成oracle和mysql的,mysql的就正常,oracle就没有监听了,有大佬知道是什么情况吗



参考答案:

这个问题可能是由于以下几个原因导致的:

  1. 网络问题:检查你的网络连接是否稳定,如果网络不稳定,可能会导致Flink CDC与Oracle的连接中断。
  2. Oracle数据库的问题:检查Oracle数据库是否有异常,比如是否有大量的锁等待,是否有长时间的查询等,这些都可能导致Flink CDC无法正常监听。
  3. Flink CDC的配置问题:检查你的Flink CDC的配置是否正确,比如连接字符串、用户名、密码等。
  4. Flink CDC的bug:虽然Flink CDC是一个成熟的项目,但是也可能存在一些未知的bug,你可以尝试升级到最新版本看看是否能解决问题。
  5. 系统资源问题:如果你的系统资源(CPU、内存、磁盘IO等)不足,也可能导致Flink CDC无法正常工作。



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/602559



问题五:flink cdc 3.0 整库同步数据,会导致业务数据库正常访问吗?比如被锁定,或者负载变高。

已解决

我现在使用的是flink cdc pipeline的方式,整库从mysql同步到StarRocks里面,首次全量是否会对mysql造成大量资源消耗,导致影响业务服务。



参考答案:

使用 Flink CDC 3.0 进行整库同步数据通常不会对业务数据库造成显著影响,但具体情况还需要依据实际环境和配置来判断。

Flink CDC(Change Data Capture)是 Apache Flink 的一个源连接器,用于捕获和同步数据库中的数据变更。它设计用来近实时地捕捉变更并将这些变更应用到下游系统。以下是一些关于 Flink CDC 3.0 对 MySQL 数据库影响的考虑因素:

  1. 资源消耗:Flink CDC 通过观察 binlog 来捕捉变更,这通常是对数据库非侵入性的过程,并且资源消耗相对较低。不过,首次全量同步可能会产生较大的数据读取操作,这可能会短暂增加数据库的I/O负载。
  2. 锁定与阻塞:正常情况下,Flink CDC 不应该导致数据库锁或阻塞。因为它仅仅是读取binlog中的数据变更,不需要对源表加锁。
  3. 性能调优:为了避免因同步任务造成过大的数据库压力,可以调整Flink作业的并行度、checkpoint间隔以及其他相关参数来优化性能。
  4. schema变更自动同步:Flink CDC 3.0 支持 schema 变更自动同步,减少了手动介入的需要。这意味着在数据源发生 schema 变更时,用户无需手动更新同步任务,从而降低了运维成本。
  5. 分库分表支持:Flink CDC 3.0 还提供了对分库分表等复杂数据集成场景的支持。这有助于处理大型数据库环境,其中数据可能分布在多个物理位置。
  6. 环境配置:具体实现时,建议参考官方文档或社区实践来搭建环境和配置Flink CDC。正确的配置可以帮助避免潜在的问题,例如时间戳时区差异等。
  7. 监控与评估:在实施整库同步之前,可以在测试环境中模拟并监控资源使用情况,以评估可能的影响。

综上所述,虽然 Flink CDC 3.0 旨在最小化对源数据库的影响,但在实际操作中,仍然需要考虑到首次全量同步可能带来的瞬时资源峰值。建议在非高峰时段执行全量同步,并对数据库性能进行适当监控,确保业务服务不受影响。同时,根据官方文档和最佳实践来配置和运行 Flink CDC 作业可以进一步降低风险。



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/602454

相关实践学习
基于Hologres轻松玩转一站式实时仓库
本场景介绍如何利用阿里云MaxCompute、实时计算Flink和交互式分析服务Hologres开发离线、实时数据融合分析的数据大屏应用。
Linux入门到精通
本套课程是从入门开始的Linux学习课程,适合初学者阅读。由浅入深案例丰富,通俗易懂。主要涉及基础的系统操作以及工作中常用的各种服务软件的应用、部署和优化。即使是零基础的学员,只要能够坚持把所有章节都学完,也一定会受益匪浅。
相关文章
|
1月前
|
消息中间件 关系型数据库 MySQL
大数据-117 - Flink DataStream Sink 案例:写出到MySQL、写出到Kafka
大数据-117 - Flink DataStream Sink 案例:写出到MySQL、写出到Kafka
144 0
|
17天前
|
SQL 运维 数据可视化
阿里云实时计算Flink版产品体验测评
阿里云实时计算Flink基于Apache Flink构建,提供一站式实时大数据分析平台,支持端到端亚秒级实时数据分析,适用于实时大屏、实时报表、实时ETL和风控监测等场景,具备高性价比、开发效率、运维管理和企业安全等优势。
zdl
|
8天前
|
消息中间件 运维 大数据
大数据实时计算产品的对比测评:实时计算Flink版 VS 自建Flink集群
本文介绍了实时计算Flink版与自建Flink集群的对比,涵盖部署成本、性能表现、易用性和企业级能力等方面。实时计算Flink版作为全托管服务,显著降低了运维成本,提供了强大的集成能力和弹性扩展,特别适合中小型团队和业务波动大的场景。文中还提出了改进建议,并探讨了与其他产品的联动可能性。总结指出,实时计算Flink版在简化运维、降低成本和提升易用性方面表现出色,是大数据实时计算的优选方案。
zdl
34 0
|
1月前
|
数据可视化 大数据 数据处理
评测报告:实时计算Flink版产品体验
实时计算Flink版提供了丰富的文档和产品引导,帮助初学者快速上手。其强大的实时数据处理能力和多数据源支持,满足了大部分业务需求。但在高级功能、性能优化和用户界面方面仍有改进空间。建议增加更多自定义处理函数、数据可视化工具,并优化用户界面,增强社区互动,以提升整体用户体验和竞争力。
37 2
|
1月前
|
运维 数据处理 Apache
数据实时计算产品对比测评报告:阿里云实时计算Flink版
数据实时计算产品对比测评报告:阿里云实时计算Flink版
|
1月前
|
SQL 运维 大数据
大数据实时计算产品的对比测评
在使用多种Flink实时计算产品后,我发现Flink凭借其流批一体的优势,在实时数据处理领域表现出色。它不仅支持复杂的窗口机制与事件时间处理,还具备高效的数据吞吐能力和精准的状态管理,确保数据处理既快又准。此外,Flink提供了多样化的编程接口和运维工具,简化了开发流程,但在界面友好度上还有提升空间。针对企业级应用,Flink展现了高可用性和安全性,不过价格因素可能影响小型企业的采纳决策。未来可进一步优化文档和自动化调优工具,以提升用户体验。
122 0
|
1月前
|
SQL 运维 数据管理
在对比其他Flink实时计算产品
在对比其他Flink实时计算产品
|
3月前
|
存储 SQL 关系型数据库
实时计算 Flink版产品使用问题之如何高效地将各分片存储并跟踪每个分片的消费位置
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。
|
3月前
|
消息中间件 Kafka 数据处理
实时计算 Flink版产品使用问题之如何处理数据并记录每条数据的变更
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。
|
2月前
|
运维 数据处理 数据安全/隐私保护
阿里云实时计算Flink版测评报告
该测评报告详细介绍了阿里云实时计算Flink版在用户行为分析与标签画像中的应用实践,展示了其毫秒级的数据处理能力和高效的开发流程。报告还全面评测了该服务在稳定性、性能、开发运维及安全性方面的卓越表现,并对比自建Flink集群的优势。最后,报告评估了其成本效益,强调了其灵活扩展性和高投资回报率,适合各类实时数据处理需求。

相关产品

  • 实时计算 Flink版
  • 下一篇
    无影云桌面