实时计算 Flink版产品使用问题之 从Kafka读取数据,并与两个仅在任务启动时读取一次的维度表进行内连接(inner join)时,如果没有匹配到的数据会被直接丢弃还是会被存储在内存中

简介: 实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。

问题一:Flink CDC 里这个配置参数有文档吗?哪里有全部的配置参数可以查到?

Flink CDC 里这个配置参数有文档吗?哪里有全部的配置参数可以查到? https://github.com/apache/flink-cdc



参考答案:

pipeline连接器里面。

https://nightlies.apache.org/flink/flink-cdc-docs-master/zh/docs/connectors/pipeline-connectors/starrocks-pipeline/

是这个吧。



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/605893



问题二:Flink CDC 里有一个表cdc同步的,今天少同步了几条数据,请问如何定位问题?

Flink CDC 里有一个表cdc同步的,今天少同步了几条数据,请问如何定位问题, 日志记录的都是统计数据。我看任务是正常的。



参考答案:

检查源端数据库:

确认源数据库中的CDC日志是否包含了缺失的数据。有可能是源端没有正确捕获到这些变更,或者变更发生时CDC功能未生效。

查看源端CDC状态:

如果使用的是Debezium等工具作为源端CDC,检查Debezium的日志以确保所有相关的表更改事件都被成功捕获和发送给Flink CDC。

比较源端与目标端:

在源端和目标端分别执行SQL查询,对比特定时间范围内的数据行数,确认具体差异出现在哪些时间段或哪些特定的事务。

分析Flink CDC任务详情:

尽管日志显示任务整体运行正常,但应进一步查看更详细的日志记录,特别是错误、警告信息以及checkpoint和状态备份的相关内容。

检查是否存在checkpoint过程中丢弃的中间结果,这可能是因为checkpoint期间恰好有少量数据未能及时处理并写入目标库。

排查网络延迟和故障:

考虑到网络因素,如果网络不稳定或存在短暂中断,可能会导致部分变更事件丢失。

检查Flink Sink配置:

检视Flink CDC任务中Sink端的配置,如JDBC Sink的重试策略、缓冲大小等,确保它们足以应对可能出现的问题,并且设置合理。

若sink支持事务,则查看事务提交和回滚情况,可能存在事务提交失败但未触发重试的情况。

数据验证和审计:

在目标数据库启用审计日志,可以跟踪到插入操作的时间点和具体内容,从而找出是否有遗漏的插入动作。

测试阶段数据比对:

在生产环境之外创建一个测试环境,模拟同样的数据同步流程,并对源数据和目标数据做精确的比对,来复现和定位问题。

监控和报警:

安装和配置监控系统,以便在出现数据不一致时立即收到报警,这样可以在问题发生时迅速响应,收集当时的详细信息。



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/605890



问题三:Flink CDC 里 cdc和flink都用的哪个版本呀?

Flink CDC 里 cdc和flink都用的哪个版本呀?



参考答案:

Flink CDC支持Apache Flink 1.18版本,如果你使用的是Flink CDC 3.0,那么可以搭配Apache Flink 1.18.x系列版本进行实时数据捕获和处理。



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/605889



问题四:在使用 Flink CDC 从 Kafka 读取数据,怎么操作广播?

在使用 Flink CDC 从 Kafka 读取数据,并与两个仅在任务启动时读取一次的维度表进行内连接(inner join)时,如果没有匹配到的数据会被直接丢弃还是会被存储在内存中?我遇到的情况是 Flink 的内存占用不断增加,最终导致内存溢出和 TaskManager 崩溃。此外,我不太清楚广播(broadcast)的具体操作,因为我遇到了一些相关的问题,尽管我的维度表数据量很小(只有几十条),但 Kafka 上的数据量很大。



参考答案:

维表数据异步内存管理。可以研究下这个算子 withBroadcastSet。



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/605887



问题五:flinkcdc3.0整库同步mysql的数据到starrocks中 全量能过去增量过不去怎么排查?

flinkcdc3.0整库同步mysql的数据到starrocks中 全量能过去增量过不去怎么排查?



参考答案:

这种情况,看下sr的stream load导入任务。



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/605882

相关实践学习
基于Hologres+Flink搭建GitHub实时数据大屏
通过使用Flink、Hologres构建实时数仓,并通过Hologres对接BI分析工具(以DataV为例),实现海量数据实时分析.
实时计算 Flink 实战课程
如何使用实时计算 Flink 搞定数据处理难题?实时计算 Flink 极客训练营产品、技术专家齐上阵,从开源 Flink功能介绍到实时计算 Flink 优势详解,现场实操,5天即可上手! 欢迎开通实时计算 Flink 版: https://cn.aliyun.com/product/bigdata/sc Flink Forward Asia 介绍: Flink Forward 是由 Apache 官方授权,Apache Flink Community China 支持的会议,通过参会不仅可以了解到 Flink 社区的最新动态和发展计划,还可以了解到国内外一线大厂围绕 Flink 生态的生产实践经验,是 Flink 开发者和使用者不可错过的盛会。 去年经过品牌升级后的 Flink Forward Asia 吸引了超过2000人线下参与,一举成为国内最大的 Apache 顶级项目会议。结合2020年的特殊情况,Flink Forward Asia 2020 将在12月26日以线上峰会的形式与大家见面。
相关文章
|
消息中间件 存储 缓存
kafka 的数据是放在磁盘上还是内存上,为什么速度会快?
Kafka的数据存储机制通过将数据同时写入磁盘和内存,确保高吞吐量与持久性。其日志文件按主题和分区组织,使用预写日志(WAL)保证数据持久性,并借助操作系统的页缓存加速读取。Kafka采用顺序I/O、零拷贝技术和批量处理优化性能,支持分区分段以实现并行处理。示例代码展示了如何使用KafkaProducer发送消息。
|
存储 编译器 数据处理
C 语言结构体与位域:高效数据组织与内存优化
C语言中的结构体与位域是实现高效数据组织和内存优化的重要工具。结构体允许将不同类型的数据组合成一个整体,而位域则进一步允许对结构体成员的位进行精细控制,以节省内存空间。两者结合使用,可在嵌入式系统等资源受限环境中发挥巨大作用。
475 12
|
存储 C语言
数据在内存中的存储方式
本文介绍了计算机中整数和浮点数的存储方式,包括整数的原码、反码、补码,以及浮点数的IEEE754标准存储格式。同时,探讨了大小端字节序的概念及其判断方法,通过实例代码展示了这些概念的实际应用。
1089 1
|
5月前
|
存储 分布式计算 数据处理
「48小时极速反馈」阿里云实时计算Flink广招天下英雄
阿里云实时计算Flink团队,全球领先的流计算引擎缔造者,支撑双11万亿级数据处理,推动Apache Flink技术发展。现招募Flink执行引擎、存储引擎、数据通道、平台管控及产品经理人才,地点覆盖北京、杭州、上海。技术深度参与开源核心,打造企业级实时计算解决方案,助力全球企业实现毫秒洞察。
609 0
「48小时极速反馈」阿里云实时计算Flink广招天下英雄
|
运维 数据处理 数据安全/隐私保护
阿里云实时计算Flink版测评报告
该测评报告详细介绍了阿里云实时计算Flink版在用户行为分析与标签画像中的应用实践,展示了其毫秒级的数据处理能力和高效的开发流程。报告还全面评测了该服务在稳定性、性能、开发运维及安全性方面的卓越表现,并对比自建Flink集群的优势。最后,报告评估了其成本效益,强调了其灵活扩展性和高投资回报率,适合各类实时数据处理需求。
|
存储 分布式计算 流计算
实时计算 Flash – 兼容 Flink 的新一代向量化流计算引擎
本文介绍了阿里云开源大数据团队在实时计算领域的最新成果——向量化流计算引擎Flash。文章主要内容包括:Apache Flink 成为业界流计算标准、Flash 核心技术解读、性能测试数据以及在阿里巴巴集团的落地效果。Flash 是一款完全兼容 Apache Flink 的新一代流计算引擎,通过向量化技术和 C++ 实现,大幅提升了性能和成本效益。
4022 74
实时计算 Flash – 兼容 Flink 的新一代向量化流计算引擎
zdl
|
消息中间件 运维 大数据
大数据实时计算产品的对比测评:实时计算Flink版 VS 自建Flink集群
本文介绍了实时计算Flink版与自建Flink集群的对比,涵盖部署成本、性能表现、易用性和企业级能力等方面。实时计算Flink版作为全托管服务,显著降低了运维成本,提供了强大的集成能力和弹性扩展,特别适合中小型团队和业务波动大的场景。文中还提出了改进建议,并探讨了与其他产品的联动可能性。总结指出,实时计算Flink版在简化运维、降低成本和提升易用性方面表现出色,是大数据实时计算的优选方案。
zdl
622 56
|
消息中间件 关系型数据库 MySQL
Flink CDC 在阿里云实时计算Flink版的云上实践
本文整理自阿里云高级开发工程师阮航在Flink Forward Asia 2024的分享,重点介绍了Flink CDC与实时计算Flink的集成、CDC YAML的核心功能及应用场景。主要内容包括:Flink CDC的发展及其在流批数据处理中的作用;CDC YAML支持的同步链路、Transform和Route功能、丰富的监控指标;典型应用场景如整库同步、Binlog原始数据同步、分库分表同步等;并通过两个Demo展示了MySQL整库同步到Paimon和Binlog同步到Kafka的过程。最后,介绍了未来规划,如脏数据处理、数据限流及扩展数据源支持。
804 0
Flink CDC 在阿里云实时计算Flink版的云上实践
|
存储 关系型数据库 BI
实时计算UniFlow:Flink+Paimon构建流批一体实时湖仓
实时计算架构中,传统湖仓架构在数据流量管控和应用场景支持上表现良好,但在实际运营中常忽略细节,导致新问题。为解决这些问题,提出了流批一体的实时计算湖仓架构——UniFlow。该架构通过统一的流批计算引擎、存储格式(如Paimon)和Flink CDC工具,简化开发流程,降低成本,并确保数据一致性和实时性。UniFlow还引入了Flink Materialized Table,实现了声明式ETL,优化了调度和执行模式,使用户能灵活调整新鲜度与成本。最终,UniFlow不仅提高了开发和运维效率,还提供了更实时的数据支持,满足业务决策需求。

热门文章

最新文章

相关产品

  • 实时计算 Flink版