Python成员属性的内存特性与底层内存优化方案

简介: 这篇博客主要分享一下python成员属性的内存特性,也就是python底层节约内存的优化方案

这篇博客主要分享一下python成员属性的内存特性,也就是python底层节约内存的优化方案

成员属性的默认值

假设我们在定义成员属性是给他一个默认值,那么所有的实例中的成员属性都是指向同一块内存,而不是每个实例创建不同的内存空间去存储成员属性,下面的代码实例

class MemoryCharacter(object):
    def __init__(self):
        self.aData: str = "123"


m1 = MemoryCharacter();
m2 = MemoryCharacter();

print(id(m1.aData), id(m2.aData));

m1.aData和m2.aData的内存地址都是一样的

2536375837360 2536375837360

python成员属性的内存会不会导致数据出问题

上面的代码实例可以看出,两个实例的成员属性的指向都是一样的,那么会不会出现这样的情况,就是修改m1.aData的值会不会改变m2.aData的值

class MemoryCharacter(object):
    def __init__(self):
        self.aData: str = "123"


m1 = MemoryCharacter();
m2 = MemoryCharacter();
m1.aData = "333";
print(m1.aData, m2.aData);
print(id(m1.aData), id(m2.aData))

这里打印m1.aData和m2.aData的值已经不一样了

333 123

内存地址也会不一样了

2736447097712 2736449239600

这样的结果就是python底层做的内存处理,因为 = 来赋值就是创建一个全新的内存空间来存储的,所以每次改动都是创建一个全新的地址来存储

除了基本类型以外其他数据类型没有这个特性

这种特性只有是基本数据类型才会有,比如list、dict等数据类型是不会存在的,会每个实例单独创建一个内存空间来存储

class MemoryCharacter3:
    def __init__(self):
        self.cData: [int] = [3];


m5 = MemoryCharacter3();
m6 = MemoryCharacter3();
print(id(m5.cData), id(m6.cData))
1918241582528 1918241584832

在构造函数中给成员属性赋值内存会是怎么样的处理

class MemoryCharacter2:
    def __init__(self, data: str):
        self.data = data;


m3 = MemoryCharacter2("aaa");
m4 = MemoryCharacter2("bbb");

print(id(m3.data), id(m4.data));

如上面这个代码,两个实例的实例属性的内存地址都是不一样的

1664226701040 1664226701232

上面这个又是什么原因导致的呢?我又在构造函数中打印传入的参数的地址

class MemoryCharacter2:
    def __init__(self, data: str):
        print(id(data))
        self.data = data;


m3 = MemoryCharacter2("aaa");
m4 = MemoryCharacter2("bbb");

print(id(m3.data), id(m4.data));

发现传入的参数地址就是最后这个实例成员属性的地址,由此得知,函数参数的传递是地址传递,而不是值传递。

因为上面的是使用基本数据类型来传递才会这样,那使用list这种不是基本数据类型的会有什么结果

class MemoryCharacter2:
    def __init__(self, data: str,cData:[int]):
        print(id(cData))
        self.cData = cData;
        self.data = data;

m3 = MemoryCharacter2("aaa",[123]);
m4 = MemoryCharacter2("bbb",[444]);

print(id(m3.cData), id(m4.cData));

打印结果为

1644995262272
1644995262400
1644995262272 1644995262400

由此得知,python的参数是使用地址传递的,才导致成员属性地址不一样

python成员属性特性原因是什么呢?

假设有一个类,这个类的一个成员属性是一个固定值,但是又想每个实例中单独使用,不跟所有人共享,如果这个类的实例有几万个,那么他这个成员属性就会存在几万个,有因为是固定值,那么这种行为就极其浪费内存空间,由此原因,python底层就创建一个固定空间,共全部实例使用,这样既不会浪费空间,又不影响功能

python这种处理有什么坏处呢?

假设你实例要使用到内存相关的处理,那么python成员属性的特性会导致你有各种奇奇怪怪的bug。

相关文章
|
7天前
|
机器学习/深度学习 Rust 算法
Python环境管理的新选择:UV和Pixi,高性能Python环境管理方案
近期Python生态系统在包管理领域发生了重要变化,Anaconda调整商业许可证政策,促使社区寻找更开放的解决方案。本文介绍两款新一代Python包管理工具:UV和Pixi。UV用Rust编写,提供高性能依赖解析和项目级环境管理;Pixi基于Conda生态系统,支持conda-forge和PyPI包管理。两者分别适用于高性能需求和深度学习项目,为开发者提供了更多选择。
27 2
|
18天前
|
存储 数据处理 Python
Python如何显示对象的某个属性的所有值
本文介绍了如何在Python中使用`getattr`和`hasattr`函数来访问和检查对象的属性。通过这些工具,可以轻松遍历对象列表并提取特定属性的所有值,适用于数据处理和分析任务。示例包括获取对象列表中所有书籍的作者和检查动物对象的名称属性。
25 2
|
2月前
|
存储 架构师 Java
内存溢出原因与解决方案(4大主流方案详解)
本文详解内存溢出(OOM)的原因及解决方案。关注【mikechen的互联网架构】,10年+BAT架构经验倾囊相授。
内存溢出原因与解决方案(4大主流方案详解)
|
1月前
|
Python
闭包(Closure)是**Python中的一种高级特性
闭包(Closure)是**Python中的一种高级特性
41 8
|
2月前
|
Python
Python成员运算符
Python成员运算符
31 2
|
3月前
|
索引 Python
python-类属性操作
【10月更文挑战第11天】 python类属性操作列举
32 1
|
3月前
|
存储 大数据 数据处理
Python 中的列表推导式与生成器:特性、用途与区别
Python 中的列表推导式与生成器:特性、用途与区别
37 2
|
3月前
|
存储 编译器 C++
【C++】掌握C++类的六个默认成员函数:实现高效内存管理与对象操作(二)
【C++】掌握C++类的六个默认成员函数:实现高效内存管理与对象操作
|
3月前
|
设计模式 监控 安全
Python多线程编程:特性、挑战与最佳实践
Python多线程编程:特性、挑战与最佳实践
48 0
|
3月前
|
设计模式 监控 安全
Python多线程编程:特性、挑战与最佳实践【1】
Python多线程编程:特性、挑战与最佳实践【1】
40 0