【数据结构与算法】:关于时间复杂度与空间复杂度的计算(C/C++篇)——含Leetcode刷题-2

简介: 【数据结构与算法】:关于时间复杂度与空间复杂度的计算(C/C++篇)——含Leetcode刷题

【数据结构与算法】:关于时间复杂度与空间复杂度的计算(C/C++篇)——含Leetcode刷题-1

https://developer.aliyun.com/article/1538357


三、空间复杂度的计算

空间复杂度是对一个算法在运行过程中临时占用存储空间大小的量度 。空间复杂度不是程序占用了多少Byte的空间,因为这个也没太大意义,所以空间复杂度算的是变量的个数。空间复杂度计算规则基本跟实践复杂度类似,也使用大O渐进表示法。


【示例1】:

// 计算BubbleSort的空间复杂度?
void BubbleSort(int* a, int n)
{
    assert(a);
    for (size_t end = n; end > 0; --end)
    {
        int exchange = 0;
        for (size_t i = 1; i < end; ++i)
        {
            if (a[i-1] > a[i])
            {
                Swap(&a[i-1], &a[i]);
                exchange = 1;
            }
        }
        if (exchange == 0)
            break;
    }
}

7c0b565413daebbd4bb2d23823b51ee1_0e01ce87441847c3ac91e303486b1cf7.png

记住一个点:时间是累计的,空间是不累计的,空间是可以重复利用的,for循环走了N次,重复利用的是一个空间。

即这个算法的空间复杂度为:

O(1)

【示例2】:

// 计算Fibonacci的空间复杂度?
long long* Fibonacci(size_t n)
{
    if(n==0)
        return NULL;
    long long * fibArray = (long long *)malloc((n+1) * sizeof(long long));
    fibArray[0] = 0;
    fibArray[1] = 1;
    for (int i = 2; i <= n ; ++i)
    {
        fibArray[i ] = fibArray[ i - 1] + fibArray [i - 2];
    }
    return fibArray ;
}

6699a2e8f9f376606e8ef7ff7ead1019_dc07eff5d40e40a0a0de923ed860bbc2.png

空间复杂度为:

O(N)

【示例3】:

// 计算阶乘递归Factorial的空间复杂度?
long long Factorial(size_t N)
{
    return N < 2 ? N : Factorial(N-1)*N;
}

每次调用都会创建栈帧,调用了N次,每个栈帧使用了常数个空间O(1),其整体的空间复杂度为:

O(N)

四、Leetcode刷题

1. 消失的数

消失的数

思路一:排序 --> 对于示例输入:0 1 3,后一个数比前一个数大一就说明找到了

这个思路可行,但不符合提议为O(n)

排序 --> 最快排序O(N * logN),不符合。


思路2:把0到n的所有整数加到一起,结果为ret1,把输入示例中数组的数加到一起,结果为ret2,用ret1减去ret2,得到的结果就是所缺失的数。

int missingNumber(int* nums, int numsSize){
    int ret1 = 0;
    // 缺失一个数,那么0到n的所有数的个数就是numsSize的个数加1
    for(int i = 0; i < numsSize + 1; i++)
    {
        ret1 += i;  // 计算0到n之间所有的数的和
    }
    int ret2 = 0;
    for(int j = 0; j < numsSize; j++)
    {
        ret2 += nums[j];  // 计算数组nums中所有数的和
    }
    return ret1 - ret2;
}

思路3:按位异或,两个数按位异或(二进制),相同为0,相异为1,两个相同的数按位异或得到的就是0,另外,异或是支持交换律的,这意味着不需要排序直接依次异或即可。我们把从0到n之间的所有数与数组中的数依次按位异或,相同的数按位异或直接就等于0,最后得到的结果就是缺失的数。

int missingNumber(int* nums, int numsSize){
    int n = 0;
    for(int i = 0; i < numsSize; i++)
    {
      // 先跟数组中的数异或
        n ^= nums[i]; // 0异或任何数还是原来那个数 
    }
    for(int j = 0; j < numsSize + 1; j++)
    {
      // 在跟[0,n]之间所有的数异或
        n ^= j;
    }
    return n;
}

2. 旋转数组

旋转数组

题意:输入一个数k,将数组中的每个元素向右移动k位,数组的最后一个元素向右移动移位后就成了数组的第一个元素。

思路一:旋转k次,给一个变量tmp用于存数组的最后一个元素,从数组的最后一个元素开始,与他的前面一个元素互换,然后将tmp赋值给数组的首元素,这是旋转一次的过程,最后循环k次就可以了。

缺陷:Leetcode中有些测试样例将数组给的特别大,跑不过。

这种算法的时间复杂度为O(N * K)


思路二:以空间换时间,创建一个和nums同样大的数组,将nums数组的后k位元素与前k位元素进行互换,然后在将新数组中的元素拷贝到nums中。

缺陷:时间复杂度为O(N),空间复杂度为O(N),与题意不相符。


思路三:后k个逆置,前n - k个逆置,最后在整体逆置。假设给定一个数组:[1,2,3,4,5,6,7],k = 3,前k个逆置之后变成[1,2,3,4,7,6,5],前n - k个逆置后变成[4,3,2,1,7,6,5],最后在整体逆置后变成[5,6,7,1,2,3,4],最后得到的结果就和测试样例中的一样啦。


样例中可能会出现k大于数组元素的个数,对k取数组大小的余数即可。

// 逆置操作
void Reverse(int *nums, int left, int right)
{
    while(left < right)
    {
        int tmp = nums[left];
        nums[left] = nums[right];
        nums[right] = tmp;
        left++;
        right--;
    }
}
void rotate(int* nums, int numsSize, int k) {
    if(k >= numsSize)
    {
        k %= numsSize;  // 如果k大于数组, 对k进行取模操作
    }
    // 数组后k个逆置
    Reverse(nums, numsSize - k, numsSize - 1);
    // 数组前n - k个逆置
    Reverse(nums, 0, numsSize - k - 1);
    // 数组整体逆置
    Reverse(nums, 0, numsSize - 1);
}

相关文章
|
2月前
|
机器学习/深度学习 缓存 算法
Python算法设计中的时间复杂度与空间复杂度,你真的理解对了吗?
【10月更文挑战第4天】在Python编程中,算法的设计与优化至关重要,尤其在数据处理、科学计算及机器学习领域。本文探讨了评估算法性能的核心指标——时间复杂度和空间复杂度。通过详细解释两者的概念,并提供快速排序和字符串反转的示例代码,帮助读者深入理解这些概念。同时,文章还讨论了如何在实际应用中平衡时间和空间复杂度,以实现最优性能。
79 6
|
2月前
|
存储 分布式计算 算法
大数据-106 Spark Graph X 计算学习 案例:1图的基本计算、2连通图算法、3寻找相同的用户
大数据-106 Spark Graph X 计算学习 案例:1图的基本计算、2连通图算法、3寻找相同的用户
72 0
|
2月前
|
搜索推荐 算法
插入排序算法的平均时间复杂度解析
【10月更文挑战第12天】 插入排序是一种简单直观的排序算法,通过不断将未排序元素插入到已排序部分的合适位置来完成排序。其平均时间复杂度为$O(n^2)$,适用于小规模或部分有序的数据。尽管效率不高,但在特定场景下仍具优势。
|
2月前
|
机器学习/深度学习 存储 缓存
数据结构与算法学习十:排序算法介绍、时间频度、时间复杂度、常用时间复杂度介绍
文章主要介绍了排序算法的分类、时间复杂度的概念和计算方法,以及常见的时间复杂度级别,并简单提及了空间复杂度。
41 1
数据结构与算法学习十:排序算法介绍、时间频度、时间复杂度、常用时间复杂度介绍
|
2月前
|
JSON 算法 数据可视化
测试专项笔记(一): 通过算法能力接口返回的检测结果完成相关指标的计算(目标检测)
这篇文章是关于如何通过算法接口返回的目标检测结果来计算性能指标的笔记。它涵盖了任务描述、指标分析(包括TP、FP、FN、TN、精准率和召回率),接口处理,数据集处理,以及如何使用实用工具进行文件操作和数据可视化。文章还提供了一些Python代码示例,用于处理图像文件、转换数据格式以及计算目标检测的性能指标。
77 0
测试专项笔记(一): 通过算法能力接口返回的检测结果完成相关指标的计算(目标检测)
|
2月前
|
存储 算法 C++
高精度算法(加、减、乘、除,使用c++实现)
高精度算法(加、减、乘、除,使用c++实现)
667 0
高精度算法(加、减、乘、除,使用c++实现)
|
2月前
|
算法 C语言
深入理解算法效率:时间复杂度与空间复杂度
深入理解算法效率:时间复杂度与空间复杂度
|
2月前
|
存储 算法 决策智能
【算法】博弈论(C/C++)
【算法】博弈论(C/C++)
|
2月前
|
存储 算法 C++
【算法】哈希映射(C/C++)
【算法】哈希映射(C/C++)
|
2月前
|
机器学习/深度学习 人工智能 算法
【算法】最长公共子序列(C/C++)
【算法】最长公共子序列(C/C++)