【C语言基础】:动态内存管理(含经典笔试题分析)-2

简介: 【C语言基础】:动态内存管理(含经典笔试题分析)

【C语言基础】:动态内存管理(含经典笔试题分析)-1

https://developer.aliyun.com/article/1538335


4. 常见的动态内存错误

4.1 对NULL指针的解引用操作

void test()
{
  int* p = (int*)malloc(INT_MAX);
  *p = 20;  //如果p的值是NULL,就会有问题
  free(p);
}

8c89def6b50c8a51679ac4c704716f71_b9a76bacf8c54cb1b6f33cb518fe703c.png

这里一定要对p进行判断,避免p是一个空指针。


4.2 对动态开辟空间的越界访问

void test()
{
  int* p = (int*)malloc(10 * sizeof(int));
  if (p != NULL)
  {
    for (int i = 0; i <= 10; i++)
    {
      *(p + i) = i + 1;  //当i是10的时候越界访问
    }
  }
  free(p);
  p = NULL;
}

malloc申请的空间和数组非常相似,都是一个连续的空间,所以要对边界进行把控,避免越界访问。


4.3 对非动态开辟内存使用free释放

int main()
{
  int a = 10;
  int* p = &a;
  free(p);
  p = NULL;
  return 0;
}

注意:free只能释放动态申请的空间,而局部变量是在栈区的,无法用free释放。


4.4 使用free释放一块动态开辟内存的一部分

int main()
{
  int* p = (int*)malloc(100);  // 申请100个字节大小的空间
  if (p == NULL)
  {
    return 1;
  }
  for (int i = 0; i < 10; i++)
  {
    *p = i + 1;
    p++;  // 这里的p不再是动态申请的内存的起始位置
  }
  free(p);
  p = NULL;
  return 0;
}

这里的p已经不再指向起始位置,不能对其使用free进行释放。


4.5 对同一块动态内存多次释放

void test()
{
  int* p = (int*)malloc(100);
  // ...
  free(p);
  free(p);  // 重复释放
}

这种对动态内存重复释放也是错误的,但可以避免,就是在第一次释放后及时将p置为空指针。


4.6 动态开辟内存忘记释放(内存泄漏)

int main()
{
  int* p = (int*)malloc(100);
  if (p != NULL)
  {
    *p = 20;
  }
  while (1);
  return 0;
}

动态申请空间未释放会导致这一部分内存无法再次被申请,会一直占用,导致内存泄漏。

切记:动态开辟的空间⼀定要释放,并且正确释放。


5. 动态内存经典笔试题分析

【题目1】:


void GetMemory(char* p)
{
  p = (char*)malloc(100);
}
void Test(void)
{
  char* str = NULL;
  GetMemory(str);
  strcpy(str, "hello world");
  printf(str);
}

请问运行Test 函数会有什么样的结果?


分析:Test函数里面调用GetMemory函数,而GetMemory函数里面开辟了一个100个字节大小的空间,但由于是传值调用,出GetMemory函数时这个申请的空间就被销毁了,所以Test函数里的str还是一个空指针,将字符串拷贝到空指针中必定会对空指针进行解引用操作,导致程序崩溃。

解决:GetMemory使用传址调用,直接对str进行开辟空间,使用完之后及时对开辟空间进行释放,str置为空指针。


【题目2】:


char* GetMemory(void)
{
  char p[] = "hello world";
  return p;
}
void Test(void)
{
  char* str = NULL;
  str = GetMemory();
  printf(str);
}

请问运行Test 函数会有什么样的结果?


分析:Test函数里面将GetMemory的返回值返回给str,但由于GetMemory函数调用后p就被销毁了,导致str成为了一个野指针,无法打印hello world,这就是返回栈空间地址的问题。


【题目3】:


void GetMemory(char** p, int num)
{
  *p = (char*)malloc(num);
}
void Test(void)
{
  char* str = NULL;
  GetMemory(&str, 100);
  strcpy(str, "hello");
  printf(str);
}

请问运行Test 函数会有什么样的结果?


分析:Test函数里面将str进行传址调用,在GetMemory函数里面申请100个字节大小的空间,将hello拷贝到str所指向的空间中,但是使用之后并没有使用free函数进行释放,导致内存泄漏。

解决:申请的空间使用完之后要使用free函数进行释放,并将str置为空指针。


【题目4】:


void Test(void)
{
  char* str = (char*)malloc(100);
  strcpy(str, "hello");
  free(str);
  if (str != NULL)
  {
    strcpy(str, "world");
    printf(str);
  }
}

请问运行Test 函数会有什么样的结果?


分析:Test函数里面str申请了100个字节的空间,将hello拷贝到str所指向的空间中,就直接用free释放掉了,导致str成了野指针,之前将hello拷贝到str中,所以str一定不是空指针,所以下面的if语句一定会执行,打印str空间里的内容会对野指针进行操作导致程序崩溃。


二、柔性数组

C99 中,结构中的最后⼀个元素允许是未知大小的数组,这就叫做『柔性数组』成员。

【示例】:


struct S
{
  int i;
  int arr[0];  // 柔性数组成员
  //有些编译器会报错⽆法编译可以改成:int arr[];
};

1. 柔性数组的特点

  • 结构中的柔性数组成员前面必须至少一个其他成员。
  • sizeof 返回的这种结构大小不包括柔性数组的内存。
  • 包含柔性数组成员的结构用malloc ()函数进行内存的动态分配,并且分配的内存应该大于结构的大小,以适应柔性数组的预期大于。

【示例】:


struct S
{
  int n;//4个字节
  int arr[];//柔性数组
};
int main()
{
  printf("%zd\n", sizeof(struct S));
  return 0;
}

200fb3e72dddd071e23d4c6c407d29e6_23a575443e644e649cc8e4967f5f86f0.png

sizeof只计算不包括柔性数组的内存,所以柔性数组成员前面必须至少一个其他成员,不然结构体的大小将为0。


2. 柔性数组的使用

【示例】:

代码1


#include<stdlib.h>
struct S
{
  int n;//4个字节
  int arr[];//柔性数组
};
int main()
{
  struct S* ps = (struct S*)malloc(sizeof(struct S) + 5 * sizeof(int));
  if (ps == NULL)
  {
    perror("malloc");
    return 1;
  }
  ps->n = 100;
  for (int i = 0; i < 5; i++)
  {
    ps->arr[i] = i;
  }
  // 释放
  free(ps);
  ps = NULL;
  return 0;
}

2c8a84315083c785779fec39ebaf7a5e_371854b6b8364d35896e6f2c8cc8280d.png

malloc函数中sizeof(struct S)计算的是除了柔性数组的空间,后面的才是给柔性数组申请的空间。当然


代码2


struct S
{
  int n;
  int* arr;
};
int main()
{
  struct S* ps = (struct S*)malloc(sizeof(struct S));
  if (ps == NULL)
    return 1;
  ps->arr = (int*)malloc(5 * sizeof(int));
  if (ps->arr == NULL)
    return 1;
  ps->n = 100;
  for (int i = 0; i < 5; i++)
  {
    ps->arr[i] = i;
  }
  // 调整空间大小
  int* ptr = (int*)realloc(ps->arr, 10 * sizeof(int));
  if (ptr == NULL)
    return 1;
  ps->arr = ptr;
  // 使用
  //...

  // 释放
  free(ps->arr);
  free(ps);
  return 0;
}

3. 柔性数组的优点

上述代码1和代码2可以完成同样的功能,但是代码1的实现有两个好处:

第一个好处是:方便内存释放

如果我们的代码是在⼀个给别人用的函数中,你在⾥⾯做了⼆次内存分配,并把整个结构体返回给用户。用户调用free可以释放结构体,但是用户并不知道这个结构体内的成员也需要free,所以你不能指望用户来发现这个事。所以,如果我们把结构体的内存以及其成员要的内存⼀次性分配好了,并返回给用户一个结构体指针,用户做⼀次free就可以把所有的内存也给释放掉。


第二个好处是:这样有利于访问速度

连续的内存有益于提高访问速度,也有益于减少内存碎片。


三、C/C++中程序内存区域划分

9640d8bc6b53aa780eb08254f2340bae_70d5f7195b5841bb898fef9d3381a9b7.png


  1. 栈区(stack):在执行函数时,函数内局部变量的存储单元都可以在栈上创建,函数执行结束时这些存储单元自动被释放。栈内存分配运算内置于处理器的指令集中,效率很高,但是分配的内存容量有限。 栈区主要存放运行函数而分配的局部变量、函数参数、返回数据、返回地址等。
  2. 堆区(heap):⼀般由程序员分配释放, 若程序员不释放,程序结束时可能由OS回收 。分配方式类似于链表。
  3. 数据段(静态区):(static)存放全局变量、静态数据。程序结束后由系统释放。
  4. 代码段:存放函数体(类成员函数和全局函数)的二进制代码。


相关文章
|
6月前
|
存储 弹性计算 缓存
阿里云服务器ECS经济型、通用算力、计算型、通用和内存型选购指南及使用场景分析
本文详细解析阿里云ECS服务器的经济型、通用算力型、计算型、通用型和内存型实例的区别及适用场景,涵盖性能特点、配置比例与实际应用,助你根据业务需求精准选型,提升资源利用率并降低成本。
463 3
|
2月前
|
设计模式 缓存 Java
【JUC】(4)从JMM内存模型的角度来分析CAS并发性问题
本篇文章将从JMM内存模型的角度来分析CAS并发性问题; 内容包含:介绍JMM、CAS、balking犹豫模式、二次检查锁、指令重排问题
125 1
|
5月前
|
存储 人工智能 自然语言处理
AI代理内存消耗过大?9种优化策略对比分析
在AI代理系统中,多代理协作虽能提升整体准确性,但真正决定性能的关键因素之一是**内存管理**。随着对话深度和长度的增加,内存消耗呈指数级增长,主要源于历史上下文、工具调用记录、数据库查询结果等组件的持续积累。本文深入探讨了从基础到高级的九种内存优化技术,涵盖顺序存储、滑动窗口、摘要型内存、基于检索的系统、内存增强变换器、分层优化、图形化记忆网络、压缩整合策略以及类操作系统内存管理。通过统一框架下的代码实现与性能评估,分析了每种技术的适用场景与局限性,为构建高效、可扩展的AI代理系统提供了系统性的优化路径和技术参考。
283 4
AI代理内存消耗过大?9种优化策略对比分析
|
5月前
|
安全 C语言 C++
比较C++的内存分配与管理方式new/delete与C语言中的malloc/realloc/calloc/free。
在实用性方面,C++的内存管理方式提供了面向对象的特性,它是处理构造和析构、需要类型安全和异常处理的首选方案。而C语言的内存管理函数适用于简单的内存分配,例如分配原始内存块或复杂性较低的数据结构,没有构造和析构的要求。当从C迁移到C++,或在C++中使用C代码时,了解两种内存管理方式的差异非常重要。
209 26
|
5月前
|
安全 C语言
C语言中的字符、字符串及内存操作函数详细讲解
通过这些函数的正确使用,可以有效管理字符串和内存操作,它们是C语言编程中不可或缺的工具。
328 15
|
9月前
|
存储 Java
课时4:对象内存分析
接下来对对象实例化操作展开初步分析。在整个课程学习中,对象使用环节往往是最棘手的问题所在。
|
9月前
|
Java 编译器 Go
go的内存逃逸分析
内存逃逸分析是Go编译器在编译期间根据变量的类型和作用域,确定变量分配在堆上还是栈上的过程。如果变量需要分配在堆上,则称作内存逃逸。Go语言有自动内存管理(GC),开发者无需手动释放内存,但编译器需准确分配内存以优化性能。常见的内存逃逸场景包括返回局部变量的指针、使用`interface{}`动态类型、栈空间不足和闭包等。内存逃逸会影响性能,因为操作堆比栈慢,且增加GC压力。合理使用内存逃逸分析工具(如`-gcflags=-m`)有助于编写高效代码。
194 2
|
存储 编译器 程序员
【C语言】内存布局大揭秘 ! -《堆、栈和你从未听说过的内存角落》
在C语言中,内存布局是程序运行时非常重要的概念。内存布局直接影响程序的性能、稳定性和安全性。理解C程序的内存布局,有助于编写更高效和可靠的代码。本文将详细介绍C程序的内存布局,包括代码段、数据段、堆、栈等部分,并提供相关的示例和应用。
423 5
【C语言】内存布局大揭秘 ! -《堆、栈和你从未听说过的内存角落》
|
存储 缓存 算法
【C语言】内存管理函数详细讲解
在C语言编程中,内存管理是至关重要的。动态内存分配函数允许程序在运行时请求和释放内存,这对于处理不确定大小的数据结构至关重要。以下是C语言内存管理函数的详细讲解,包括每个函数的功能、标准格式、示例代码、代码解释及其输出。
418 6
|
传感器 人工智能 物联网
C 语言在计算机科学中尤其在硬件交互方面占据重要地位。本文探讨了 C 语言与硬件交互的主要方法,包括直接访问硬件寄存器、中断处理、I/O 端口操作、内存映射 I/O 和设备驱动程序开发
C 语言在计算机科学中尤其在硬件交互方面占据重要地位。本文探讨了 C 语言与硬件交互的主要方法,包括直接访问硬件寄存器、中断处理、I/O 端口操作、内存映射 I/O 和设备驱动程序开发,以及面临的挑战和未来趋势,旨在帮助读者深入了解并掌握这些关键技术。
324 6

热门文章

最新文章