基于禁忌搜索算法的TSP路径规划matlab仿真

本文涉及的产品
实时数仓Hologres,5000CU*H 100GB 3个月
实时计算 Flink 版,5000CU*H 3个月
检索分析服务 Elasticsearch 版,2核4GB开发者规格 1个月
简介: **摘要:**使用禁忌搜索算法解决旅行商问题(TSP),在MATLAB2022a中实现路径规划,显示优化曲线与路线图。TSP寻找最短城市访问路径,算法通过避免局部最优,利用禁忌列表不断调整顺序。关键步骤包括初始路径选择、邻域搜索、解评估、选择及禁忌列表更新。过程示意图展示搜索效果。

1.程序功能描述
基于禁忌搜索算法的TSP路径规划,输出优化收敛曲线以及路线规划图。

2.测试软件版本以及运行结果展示
MATLAB2022a版本运行

1.jpeg
2.jpeg

3.核心程序
```for it = 1:Iteration
it
% 初始化本次迭代的最佳新解代价为正无穷
bestnewsol.Cost = inf;

% 遍历所有动作并尝试应用它们  
for i = 1:Nact
    if TC(i) == 0% 如果这个动作不在Tabu列表中  

newsol.Position = func_Action(sol.Position, ActionList{i});
newsol.Cost = Js(newsol.Position);% 计算新解的代价
newsol.ActionIndex = i;% 记录应用的动作索引
% 如果新解的代价更好,则更新本次迭代的最佳新解
if newsol.Cost<= bestnewsol.Cost
bestnewsol = newsol;
end
end
end

% 用最佳新解更新当前解  
sol = bestnewsol;

% 更新Tabu列表  
for i = 1:Nact
    if i == bestnewsol.ActionIndex% 如果这个动作是最佳新解的动作  
        TC(i) = TL;       % 将其添加到Tabu列表中  
    else
        TC(i) = max(TC(i)-1, 0);% 否则减少Tabu计数器  
    end
end

% 如果找到了更好的解,则更新最佳解  
if sol.Cost<= BestSol.Cost

BestSol = sol;
end

% 保存最佳代价 

BestCost(it) = BestSol.Cost;

% 绘制最佳解  

figure(1);
func_plot(BestSol);
pause(0.01);

end
% 只保留实际迭代次数的最佳代价
BestCost = BestCost(1:it);

%% Results

figure;
plot(BestCost, 'LineWidth', 2);
xlabel('Iteration');
ylabel('Best Cost');
grid on;
23

```

4.本算法原理
基于禁忌搜索算法的TSP(旅行商问题)路径规划是一种求解TSP问题的优化算法。禁忌搜索算法是一种启发式搜索方法,它通过避免重复搜索和陷入局部最优解来提高搜索效率。在TSP问题中,禁忌搜索算法通过不断地调整路径中的城市顺序来寻找最优路径。

4.1 TSP问题描述
TSP问题是一个经典的组合优化问题,其目标是找到访问一系列城市并返回起点的最短可能路径。给定一个城市列表和每对城市之间的距离,TSP问题的解是一个排列,它表示访问每个城市一次并返回起点的顺序。

4.2 禁忌搜索算法原理
禁忌搜索算法是一种基于局部搜索的元启发式算法,它通过引入禁忌列表来避免重复搜索和陷入局部最优解。禁忌搜索算法从一个初始解开始,然后在其邻域内搜索更好的解。搜索过程中,算法会记住已经访问过的解,并将它们加入到禁忌列表中,以避免在近期内重复访问。当搜索到一定程度后,禁忌列表中的解会逐渐被释放,从而允许算法在更大的范围内搜索。

4.3 算法步骤
禁忌搜索算法求解TSP问题的步骤大致如下:

初始化:选择一个初始路径作为当前解,并初始化禁忌列表为空。

邻域搜索:定义当前解的邻域。在TSP问题中,邻域通常通过交换、插入或逆序等操作来生成新的路径。

评估:计算邻域内所有解的目标函数值(路径总长度)。

选择:从邻域中选择一个非禁忌的最优解作为新的当前解。如果邻域中的所有解都被禁忌,则选择其中最好的解,并更新禁忌列表。

更新禁忌列表:将新选择的解加入到禁忌列表中,并移除最早加入的解(如果禁忌列表已满)。

6806c293a18f1c9f713e92e18422d7e7_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

终止条件:如果达到预设的最大迭代次数或满足其他终止条件,则停止搜索;否则,返回步骤2。

相关文章
|
1天前
|
机器学习/深度学习 算法
基于改进遗传优化的BP神经网络金融序列预测算法matlab仿真
本项目基于改进遗传优化的BP神经网络进行金融序列预测,使用MATLAB2022A实现。通过对比BP神经网络、遗传优化BP神经网络及改进遗传优化BP神经网络,展示了三者的误差和预测曲线差异。核心程序结合遗传算法(GA)与BP神经网络,利用GA优化BP网络的初始权重和阈值,提高预测精度。GA通过选择、交叉、变异操作迭代优化,防止局部收敛,增强模型对金融市场复杂性和不确定性的适应能力。
103 80
|
6天前
|
供应链 算法 调度
排队算法的matlab仿真,带GUI界面
该程序使用MATLAB 2022A版本实现排队算法的仿真,并带有GUI界面。程序支持单队列单服务台、单队列多服务台和多队列多服务台三种排队方式。核心函数`func_mms2`通过模拟到达时间和服务时间,计算阻塞率和利用率。排队论研究系统中顾客和服务台的交互行为,广泛应用于通信网络、生产调度和服务行业等领域,旨在优化系统性能,减少等待时间,提高资源利用率。
|
20小时前
|
算法
基于EO平衡优化器算法的目标函数最优值求解matlab仿真
本程序基于进化优化(EO)中的平衡优化器算法,在MATLAB2022A上实现九个测试函数的最优值求解及优化收敛曲线仿真。平衡优化器通过模拟生态系统平衡机制,动态调整搜索参数,确保种群多样性与收敛性的平衡,高效搜索全局或近全局最优解。程序核心为平衡优化算法,结合粒子群优化思想,引入动态调整策略,促进快速探索与有效利用解空间。
|
20天前
|
算法
基于WOA算法的SVDD参数寻优matlab仿真
该程序利用鲸鱼优化算法(WOA)对支持向量数据描述(SVDD)模型的参数进行优化,以提高数据分类的准确性。通过MATLAB2022A实现,展示了不同信噪比(SNR)下模型的分类误差。WOA通过模拟鲸鱼捕食行为,动态调整SVDD参数,如惩罚因子C和核函数参数γ,以寻找最优参数组合,增强模型的鲁棒性和泛化能力。
|
26天前
|
机器学习/深度学习 算法 Serverless
基于WOA-SVM的乳腺癌数据分类识别算法matlab仿真,对比BP神经网络和SVM
本项目利用鲸鱼优化算法(WOA)优化支持向量机(SVM)参数,针对乳腺癌早期诊断问题,通过MATLAB 2022a实现。核心代码包括参数初始化、目标函数计算、位置更新等步骤,并附有详细中文注释及操作视频。实验结果显示,WOA-SVM在提高分类精度和泛化能力方面表现出色,为乳腺癌的早期诊断提供了有效的技术支持。
|
14天前
|
存储 算法
基于HMM隐马尔可夫模型的金融数据预测算法matlab仿真
本项目基于HMM模型实现金融数据预测,包括模型训练与预测两部分。在MATLAB2022A上运行,通过计算状态转移和观测概率预测未来值,并绘制了预测值、真实值及预测误差的对比图。HMM模型适用于金融市场的时间序列分析,能够有效捕捉隐藏状态及其转换规律,为金融预测提供有力工具。
|
22天前
|
算法
基于GA遗传算法的PID控制器参数优化matlab建模与仿真
本项目基于遗传算法(GA)优化PID控制器参数,通过空间状态方程构建控制对象,自定义GA的选择、交叉、变异过程,以提高PID控制性能。与使用通用GA工具箱相比,此方法更灵活、针对性强。MATLAB2022A环境下测试,展示了GA优化前后PID控制效果的显著差异。核心代码实现了遗传算法的迭代优化过程,最终通过适应度函数评估并选择了最优PID参数,显著提升了系统响应速度和稳定性。
|
14天前
|
机器学习/深度学习 算法 信息无障碍
基于GoogleNet深度学习网络的手语识别算法matlab仿真
本项目展示了基于GoogleNet的深度学习手语识别算法,使用Matlab2022a实现。通过卷积神经网络(CNN)识别手语手势,如&quot;How are you&quot;、&quot;I am fine&quot;、&quot;I love you&quot;等。核心在于Inception模块,通过多尺度处理和1x1卷积减少计算量,提高效率。项目附带完整代码及操作视频。
|
20天前
|
算法
基于WOA鲸鱼优化的购售电收益与风险评估算法matlab仿真
本研究提出了一种基于鲸鱼优化算法(WOA)的购售电收益与风险评估算法。通过将售电公司购售电收益风险计算公式作为WOA的目标函数,经过迭代优化计算出最优购电策略。实验结果表明,在迭代次数超过10次后,风险价值收益优化值达到1715.1万元的最大值。WOA还确定了中长期市场、现货市场及可再生能源等不同市场的最优购电量,验证了算法的有效性。核心程序使用MATLAB2022a实现,通过多次迭代优化,实现了售电公司收益最大化和风险最小化的目标。
|
23天前
|
算法
通过matlab分别对比PSO,反向学习PSO,多策略改进反向学习PSO三种优化算法
本项目使用MATLAB2022A版本,对比分析了PSO、反向学习PSO及多策略改进反向学习PSO三种优化算法的性能,主要通过优化收敛曲线进行直观展示。核心代码实现了标准PSO算法流程,加入反向学习机制及多种改进策略,以提升算法跳出局部最优的能力,增强全局搜索效率。