Linux进程——Linux下常见的进程状态

简介: Linux进程——Linux下常见的进程状态

前言:在进程学习这一块,我们主要学习的就是PCB这个进程控制块,而PBC就是用来描述进程的结构体,而进程状态就是PCB结构体中的一个变量。


本篇主要内容:

  • 操作系统中的进程状态
  • Linux下的进程状态


在开始之前,我们先来简单了解以下进程状态

进程的本质就是PCB中的一个变量!!!

所谓状态变化,本质就是修改整形变量!!!

1. 操作系统中的进程状态

本篇围绕操作系统中的三种进程状态:运行状态阻塞状态挂起状态来展开

当进程准备好了随时可以被调度时,其实就是创建状态和就绪状态,这俩没有太大区别!!


运行状态

虽然不同的计算机有不同的配置,但是无论如何

每个CPU都会在系统层面有属于自己的运行队列!

只要在运行队列中的进程都是运行状态!


阻塞状态

我们在编写的代码中,都会无法避免的访问一些操作系统里的某些资源,比如:磁盘,键盘,网卡等硬件设备,当我们用scanf或者cin读取键盘数据时,当我们不输入s时,数据没有准备就绪,进程不具备访问条件,进程代码无法向后执行,这就是阻塞状态

系统会等待用户输入,只要不输入,要访问的资源就没有就绪

比如:

  1 #include<stdio.h>
  2 
  3 int main()
  4 {
  5     int n = 0;
  6 
  7     printf("please Enter# ");
  8 
  9     scanf("%d",&n);
 10 
 11     printf("echo# %d\n",n);
 12 
 13     return 0;
 14 }  

我们在运行这段代码时;

进程一直等待着我们从键盘输入数据,此时进程就处于阻塞状态!

操作系统要管理进程,操作系统就必须知道进程的基本信息;操作系统要管理硬件,也就必须知道硬件的相关信息!

那操作系统是如何知道底层硬件的信息呢?

在操作系统中,有管理设备的结构体

将一个进程从运行队列移动至的等待队列中,再将状态改为阻塞那么这个进程就处于阻塞状态,这个过程就是状态变化!

进程状态的变化:

  • 更改PCB status的整数变量
  • 将PCB连入不同的队列中

所有过程都只会进程的PCB有关,和进程代码数据没有关系!

操作系统中,会存在非常多的队列,运行队列,等待硬件的设备等待队列等,并且所有系统内的进程都是以双链表链接起来!


挂起状态

假设:

一个进程当前被阻塞了,那么这个进程在它所等待的资源没有就绪的时候,该进程是无法被调度的。如果此时恰好OS内的内存资源已经严重不足了,那么操作系统该怎么办?

  • 因为此时进程处于阻塞状态,并且内存已严重不足,所以OS会将PCB对应的数据和代码转移到磁盘,为内存释放一部分资源,腾出一部分空间,然后该进程就被挂起了

  • 将内存数据进行置换到外设,针对所有阻塞进程,因此不用担心效率降低的问题,因为这个是必然的,而现在首要任务是让操作系统能继续执行下去
  • !分区是磁盘中真实存在的,它的大小往往是很小的,这个部分专门
    用于内存严重不足时和内存进行交互,并且当内存情况缓解后,曾经被置换出去的代码和数据又会重新加载进来
  • 当进程被系统调度时,曾经被置换出去的进程代码和数据,又要重新被加载进来


2. Linux下的进程状态

下面是一段库中找的状态的定义:

static const char * const task_state_array[] = {
"R (running)", /* 0 */
"S (sleeping)", /* 1 */
"D (disk sleep)", /* 2 */
"T (stopped)", /* 4 */
"t (tracing stop)", /* 8 */
"X (dead)", /* 16 */
"Z (zombie)", /* 32 */
};

Linux下的进程状态:

  • R运行状态(running): 并不意味着进程一定在运行中,它表明进程要么是在运行中要么在运行队列里。
  • S睡眠状态(sleeping): 意味着进程在等待事件完成(这里的睡眠有时候也叫做可中断睡眠(interruptible sleep))。
  • D磁盘休眠状态(Disk sleep)有时候也叫不可中断睡眠状态,在这个状态的进程通常会等待IO的结束。
  • T停止状态(stopped): 可以通过发送 SIGSTOP 信号给进程来停止(T)进程。这个被暂停的进程可以通过发送 SIGCONT 信号让进程继续运行。
  • X死亡状态(dead):这个状态只是一个返回状态,你不会在任务列表里看到这个状态

运行状态

在介绍完这些状态之后,我们来实际操作看看!

我们来一段死循环代码,方便我们观察

  1 #include<stdio.h>  
  2 #include <unistd.h> 
  3 int main()  
  4 {  
  5     while(1)
  6     {
  7         printf("hello , Linux!\n");
  8         sleep(1);                                                                                                                                                                      
  9     }                                                                                                       
 10     return 0;                                                                                               
 11 }                                                                                                                                                                                     
~      

我们可以看到程序时处于一个S+的状态,但是依据概念,程序不应该是R状态吗?

  • 因为循环打印时,IO输出是很慢的打印字符会和外设屏幕交互,因此大部分时间进程都处于阻塞状态,但也有极少时间在打印,所以查看进程状态时,我们偶尔可以看见R状态

如果我们将printf删除,单留while,会是什么情况呢?

  1 #include<stdio.h>  
  2   
  3 int main()  
  4 {  
  5     while(1)  
  6     {  
  7     }                                                                                  
  8     return 0;      
  9 } 

我们可以看到此时程序处于R状态


休眠状态

  • S(sleeping):休眠状态,浅度睡眠,可以被终止,浅度睡眠会对外部信号做出响应
  • D(disk sleep):也是休眠状态,深度睡眠

S相对操作系统来讲也就是阻塞状态,D则是专门针对磁盘设计的

我们来换个角度来理解以下D状态:

  • 假设在内存中,有一个进程,需要将自己的代码和数据写入磁盘,因为内容数据不小,在磁盘拷贝时,需要一段时间,此时进程变为S状态。
  • 此时,恰好系统内的内存资源已经严重不足了,系统压力太大,Linux在是在没办法时候,会通过杀掉进程,节省资源的,来不及进程反应直接被系统 “干掉” 。
  • 然后磁盘写入失败,而磁盘也有自己的事情要做,然后将未完成的代码和数据直接删除,拷贝失败!

如果真是这样,下次是很重要的数据,那么损失不可估量

因此系统创造了D状态:磁盘休眠状态;D状态不可被杀掉,OS也没有权力!

综上:S状态可以被终止,D状态不可被终止!


前台进程和后台进程

刚刚在上面查看进程状态时,是否有过疑问,为什么进程状态后面会有一个加号呢?

其实加号表示的是前台进程,而没有加号则是后台进程

我们先来了解一下这两种进程:

  • 前台进程:运行时无法使用bash外壳的指令并且可以被ctrl + c 强制终止
  • 后台进程:运行时可输入指令,不能被ctrl + c 终止只能使用kill指令来杀掉进程。

程序默认是前台进程,那么我们怎样才能将前台进程变成后台进程?

在执行程序时在末尾加上 &

通过视频我们来更直观的了解二者的区别

image.png

后台进程与前台进程


停止状态

  • T (stopped) 在进程访问软件资源的时候可能暂时不让进程进行访问,就将进程设置为STOP
  • t (tracing stop) debug程序的时候,追踪程序,遇到断点,进程暂停了

下面我们来看两个视频理解以下:

kill指令停止进程

image.png

SIGSTOP与SIGCONT

调试遇到断点

image.png 查看t状态

二者都是停止状态,对于停止状态用到的不多,我们了解一下即可!


3. 总结

在了解Linux中进程的分类时,我们通常是先了解操作系统的进程,因为二者有一定的联系,了解操作系统能更好理解进程在操作系统中的运行关系。进程状态在进程中也极为重要,希望大家能理解透彻!

谢谢大家支持本篇到这里就结束了

目录
相关文章
|
16天前
|
算法 Linux 调度
深入理解Linux操作系统的进程管理
本文旨在探讨Linux操作系统中的进程管理机制,包括进程的创建、执行、调度和终止等环节。通过对Linux内核中相关模块的分析,揭示其高效的进程管理策略,为开发者提供优化程序性能和资源利用率的参考。
43 1
|
5天前
|
存储 监控 Linux
嵌入式Linux系统编程 — 5.3 times、clock函数获取进程时间
在嵌入式Linux系统编程中,`times`和 `clock`函数是获取进程时间的两个重要工具。`times`函数提供了更详细的进程和子进程时间信息,而 `clock`函数则提供了更简单的处理器时间获取方法。根据具体需求选择合适的函数,可以更有效地进行性能分析和资源管理。通过本文的介绍,希望能帮助您更好地理解和使用这两个函数,提高嵌入式系统编程的效率和效果。
45 13
|
12天前
|
SQL 运维 监控
南大通用GBase 8a MPP Cluster Linux端SQL进程监控工具
南大通用GBase 8a MPP Cluster Linux端SQL进程监控工具
|
19天前
|
运维 监控 Linux
Linux操作系统的守护进程与服务管理深度剖析####
本文作为一篇技术性文章,旨在深入探讨Linux操作系统中守护进程与服务管理的机制、工具及实践策略。不同于传统的摘要概述,本文将以“守护进程的生命周期”为核心线索,串联起Linux服务管理的各个方面,从守护进程的定义与特性出发,逐步深入到Systemd的工作原理、服务单元文件编写、服务状态管理以及故障排查技巧,为读者呈现一幅Linux服务管理的全景图。 ####
|
1月前
|
缓存 监控 Linux
linux进程管理万字详解!!!
本文档介绍了Linux系统中进程管理、系统负载监控、内存监控和磁盘监控的基本概念和常用命令。主要内容包括: 1. **进程管理**: - **进程介绍**:程序与进程的关系、进程的生命周期、查看进程号和父进程号的方法。 - **进程监控命令**:`ps`、`pstree`、`pidof`、`top`、`htop`、`lsof`等命令的使用方法和案例。 - **进程管理命令**:控制信号、`kill`、`pkill`、`killall`、前台和后台运行、`screen`、`nohup`等命令的使用方法和案例。
137 4
linux进程管理万字详解!!!
|
25天前
|
缓存 算法 Linux
Linux内核的心脏:深入理解进程调度器
本文探讨了Linux操作系统中至关重要的组成部分——进程调度器。通过分析其工作原理、调度算法以及在不同场景下的表现,揭示它是如何高效管理CPU资源,确保系统响应性和公平性的。本文旨在为读者提供一个清晰的视图,了解在多任务环境下,Linux是如何智能地分配处理器时间给各个进程的。
|
1月前
|
存储 运维 监控
深入Linux基础:文件系统与进程管理详解
深入Linux基础:文件系统与进程管理详解
77 8
|
1月前
|
网络协议 Linux 虚拟化
如何在 Linux 系统中查看进程的详细信息?
如何在 Linux 系统中查看进程的详细信息?
68 1
|
1月前
|
Linux
如何在 Linux 系统中查看进程占用的内存?
如何在 Linux 系统中查看进程占用的内存?
|
1月前
|
算法 Linux 定位技术
Linux内核中的进程调度算法解析####
【10月更文挑战第29天】 本文深入剖析了Linux操作系统的心脏——内核中至关重要的组成部分之一,即进程调度机制。不同于传统的摘要概述,我们将通过一段引人入胜的故事线来揭开进程调度算法的神秘面纱,展现其背后的精妙设计与复杂逻辑,让读者仿佛跟随一位虚拟的“进程侦探”,一步步探索Linux如何高效、公平地管理众多进程,确保系统资源的最优分配与利用。 ####
71 4