《AIGC+软件开发新范式》--02.谈谈我对 AIGC 趋势下软件工程重塑的理解(3)

简介: 在AI 热度持续上升的当下,阿里云推出AI智能编码助手—通义灵码。通义灵码是一款基于阿里云通义代码大模型打造的智能编码助手,基于海量优秀开源代数据集和编程教科书训练,为开发者带来高效、流畅的编码体验。

本文来源于阿里云社区电子书《AIGC+软件开发新范式》


《AIGC+软件开发新范式》--02.谈谈我对 AIGC 趋势下软件工程重塑的理解(2):https://developer.aliyun.com/article/1537676




比如在代码评审场景,可以实现智能化的推荐评审人、描述和标题生成、摘要生成、大评审拆

分、代码检测、修复方案的生成以及冲突的自动修复。相当于有一个 AI 评审员,帮助完成了很多复杂的授信工作,而人类进行最终的确认就可以了。




也可以进行智能的分层测试,基于需求自动生成手工用例,自动的生成接口测试,生成单元测试,做代码评审,这些都可以做。然后像图上蓝色部分,我们也有一些技术方案可以在现阶段大模型的技术基础上落地。




我们也可以做智能化的平台工程。比如说我们有一些场景:K8s yaml 的辅助编写,CICD 的编排辅助,构建错误排查,部署过程排错,异常代码定位和运维知识问答。最终去实现配置编排→CICD→部署过程观测→异常排查,整个 CICD 主链路的智能化改造,我们把它叫做智能的平台工程,这些点我们都可以在现阶段进行落地了。



最后一个是智能的研发问答,我们可以实现统一的问答入口,将企业的知识跟大模型结合在一起,以后所有的工程师首先会想到在这个入口去问各种各样的知识,然后获得实时的答案。以及可以做代码的文档搜索,不管是文档还是代码都可以问,甚至可以让它在这里帮我生成业务代码,包括自然语言的操作、个人的智能助理,这些都是马上可以落地的一些场景。



最终,我们就在企业内部形成了这三重结构。最上层就是应用层,也就是研发工具应用和服务,它其实是一个以大模型为核心的工具和服务。中间层是模型层,我们要构建一个核心的企业个性化的大脑。最后还要有技术和算力,现在阿里云在公共云上提供了非常强大的 GPU 算力,未来我们可以直接上云来享受这一部分的 AI 给大家带来的技术红利。


image.png


最后我们认为在大模型时代,要坚守以下这四个原则。


第一是要以数据为先,高质量的数据输入会让大模型越来越聪明。所以对企业而言,未来非常大的工作量就是梳理研发资产。比如代码资产、文档资产等,首先要对它们进行梳理,识别出哪些是优质的,哪些是不优质的。然后将最优质的部分过滤出来,输入给大模型进行相关的知识沉淀,这些知识它就不会消失了,也不会形成负载,而是顺利地去赋能新员工或者其他的角色,实现相关的效能提升。


第二要坚持以人为本,AI 并不是来替代人的,而是让人更加专注于自身擅长的业务和技术创新。所以企业应用了 AI 工具以后,企业的创造力会越来越强,跑得越来越快,这是我们认为最重要的。而且现阶段 AI 是没办法替代人类的,它只能解决人类目前的一些事务性工作。


第三是安全合规,这个是我们非常重视的。尤其是通义灵码构建的时候,特别注重代码的隐私安全。对企业来讲,应用大模型的时候也要充分考虑这一点。


第四我们希望是持续收益。大家不要希望今天引入大模型的智能化软件开发工具链后,就可以实现质的提升,现在的产品还没有发展到这个程度,而且技术还有相应的瓶颈。所以我们可以采用 Landing、Growth、Expanding 三步走的方式,持续的对接大模型相关的效能红利。


四 . 软件研发智能化工具的落地


前面给大家介绍了企业落地 AI 智能研发的相关路径。现在我们再进一步来看,当下有哪些事情可以做。在这里推荐每个企业都应该去应用智能编码工具,通义灵码就是其中非常优秀的代表。


现在给大家介绍一下通义灵码。通义灵码是我们去年在云栖大会上重磅发布的一款基于代码大模型的新一代智能编码助手,这个工具主要有以下两大部分的能力。



我们可以在左侧的这个框里进行随意的问答。比如让大模型帮我生成一个算法,解答各种各样的智能的问题,研发的一些问题它可以瞬间找出相关的答案,再通过多轮会话的方式去纠正它。右侧就是编辑框,可以在里面输入中文的一些注释,或者输入代码,这时候由大模型去预测我即将写什么代码,并且给我相关的答案,如果我觉得 OK 就可以采纳。通过这样的方式我们可以和大模型进行配合,相当于它是一个助手,不断地猜我想要什么,从而提升写代码的效率。



通义灵码主要包含三大核心功能:


第一个是代码智能生成。可以进行行级、函数级的自动续写、单元测试生成、自然语言生成代码、代码注释生成等。


第二个功能是研发智能问答。研发领域的自由问答、异常报错智能排查、代码的优化建议等等,这些都是可以做的。


第三个功能是企业个性化能力。刚刚讲了 Growth 阶段其实就是需要构建一个企业私有的研发大模型,我们可以在这里面实现代码和文档的检索增强以及专属模型的微调训练,通过这样的方式去构建企业的个性化能力。

相关文章
|
7月前
拥抱不确定性:在技术实践中培养适应性思维
【5月更文挑战第23天】 在快速变化的技术世界里,不确定性已成为常态。本文旨在探讨如何在技术领域中培养适应性思维,以应对不断变化的环境。通过分享个人经验和对现有文献的分析,我们提出了一套策略和方法,帮助技术人员提高灵活性,更好地适应未来的发展。
|
6月前
|
设计模式 算法 C语言
技术进步与个人成长:从代码到思维的演变
技术不仅塑造了我们的工作方式,更深刻地影响了我们的思维模式。本文探讨了在编程实践中,个人技术能力和思维方式如何相互影响和提升,重点讨论了一些关键的经验和感悟,以及这些经历对职业发展的深远影响。
60 0
|
5月前
|
机器学习/深度学习 设计模式 人工智能
AIGC对设计行业的影响与启发:AIGC设计能替代真正的设计师吗?
AIGC技术正深刻影响设计行业,提升效率、拓宽创意边界,但无法替代设计师的创造力、审美和情感理解。Adobe国际认证成为设计师掌握AIGC技术的起点,推动行业标准化和设计师职业发展。AIGC与设计师的结合将共创设计行业的未来。
|
5月前
|
机器学习/深度学习 人工智能 自然语言处理
大模型技术的发展与实践
一、大模型的概念 大型语言模型,也称大语言模型、大模型(Large Language Model,LLM;Large Language Models,LLMs) 。 大语言模型是一种深度学习模型,特别是属于自然语言处理(NLP)的领域,一般是指包含数干亿(或更多)参数的语言模型,这些参数是在大量文本数据上训练的,例如模型GPT-3,PaLM,LLaMA等,大语言模型的目的是理解和生成自然语言,通过学习大量的文本数据来预测下一个词或生成与给定文本相关的内容。 参数可以被理解为模型学习任务所需要记住的信息,参数的数量通常与模型的复杂性和学习能力直接相关,更多的参数意味着模型可能具有更强的学习
|
6月前
|
人工智能 自然语言处理 开发者
《AIGC+软件开发新范式》--02.谈谈我对 AIGC 趋势下软件工程重塑的理解(1)
在AI 热度持续上升的当下,阿里云推出AI智能编码助手—通义灵码。通义灵码是一款基于阿里云通义代码大模型打造的智能编码助手,基于海量优秀开源代数据集和编程教科书训练,为开发者带来高效、流畅的编码体验。
125 2
|
6月前
|
人工智能 自然语言处理 IDE
《AIGC+软件开发新范式》--01.当「软件研发」遇上 AI 大模型(2)
在AI 热度持续上升的当下,阿里云推出AI智能编码助手—通义灵码。通义灵码是一款基于阿里云通义代码大模型打造的智能编码助手,基于海量优秀开源代数据集和编程教科书训练,为开发者带来高效、流畅的编码体验。
164 1
|
6月前
|
SQL 人工智能 Devops
《AIGC+软件开发新范式》--01.当「软件研发」遇上 AI 大模型(1)
在AI 热度持续上升的当下,阿里云推出AI智能编码助手—通义灵码。通义灵码是一款基于阿里云通义代码大模型打造的智能编码助手,基于海量优秀开源代数据集和编程教科书训练,为开发者带来高效、流畅的编码体验。
203 0
|
6月前
|
人工智能 运维 Devops
《AIGC+软件开发新范式》--01.当「软件研发」遇上 AI 大模型(3)
在AI 热度持续上升的当下,阿里云推出AI智能编码助手—通义灵码。通义灵码是一款基于阿里云通义代码大模型打造的智能编码助手,基于海量优秀开源代数据集和编程教科书训练,为开发者带来高效、流畅的编码体验。
169 1
|
6月前
|
人工智能 自然语言处理 搜索推荐
《AIGC+软件开发新范式》--02.谈谈我对 AIGC 趋势下软件工程重塑的理解(2)
在AI 热度持续上升的当下,阿里云推出AI智能编码助手—通义灵码。通义灵码是一款基于阿里云通义代码大模型打造的智能编码助手,基于海量优秀开源代数据集和编程教科书训练,为开发者带来高效、流畅的编码体验。
198 0
|
7月前
|
人工智能 物联网 量子技术
【专栏】培养适应性思维需终身学习、跨学科思维、创新接受失败及开放合作。拥抱技术变革,以适应性思维迎接未来
【4月更文挑战第27天】在快速迭代的技术时代,适应性思维成为个人和企业成功的关键。技术演进带来挑战,如知识更新、产业结构变化及伦理问题。适应性思维能应对不确定性,把握机会,企业需快速调整战略。培养适应性思维需终身学习、跨学科思维、创新接受失败及开放合作。拥抱技术变革,以适应性思维迎接未来。
74 5