《AIGC+软件开发新范式》--03.微调工程师岗位可能并不存在, 但使用 AI 编码工具已经成为刚需(1)

本文涉及的产品
NLP自然语言处理_高级版,每接口累计50万次
NLP 自学习平台,3个模型定制额度 1个月
NLP自然语言处理_基础版,每接口每天50万次
简介: 在AI 热度持续上升的当下,阿里云推出AI智能编码助手—通义灵码。通义灵码是一款基于阿里云通义代码大模型打造的智能编码助手,基于海量优秀开源代数据集和编程教科书训练,为开发者带来高效、流畅的编码体验。

本文来源于阿里云社区电子书《AIGC+软件开发新范式》


微调工程师岗位可能并不存在,但使用 AI 编码工具已经成为刚需


智能编码工具的快速普及是否会带来全新的编程模式?“大力出奇迹”的规律还将继续适用吗?本文节选自 QCon 北京特别策划圆桌节目,内容摘自阿里云通义灵码产品技术负责人陈鑫在圆桌对话里的精彩回答。全文见:Sora 很难跟进?微调就不是一个岗位?大力出奇迹将继续适用?大模型将对软件生态带来哪些变化?


观点 1:


智能编码工具将被更加广泛的应用,甚至出现全新的编程模式。不擅长利用大模型来辅助代码开发的程序员未来一段时间将被淘汰。


陈鑫(神秀):去年,ChatGPT 火了以后,我们立即开始着手利用大模型技术进行代码智能生成方向的工作。在此之前,我们已经有些探索,我们团队大约在 2021 年开始尝试代码工具的研发。起初,我有些悲观,因为我觉得以现在的投入,无论是在数据、算法还是人才方面,都无法超过当时 GitHub 的投入。随着大语言模型的火热,我们意识到这个方向的商业化价值以及给开发者带来的价值都是巨大的。因此,去年年初,通义灵码就成为通义系列大模型产品家族的一员。


通义灵码是一款基于通义大模型的智能编码助手,提供自然语言生成代码、单元测试生成、代码优化、注释生成、智能问答等能力,

通义灵码上线 4 个月,目前下载量已经超过 130 万,在国内 AI 编码工具领域使用率第一。但是,从最开始的产品发布、到现在灵码的产品能力获得用户的一致好评,这中间我们经历了非常多的困难。


最开始,我们尝试了基于开源模型,然后基于通义的基础模型进行训练,这其中挑战与机遇并存。一方面,我们感觉与 GithubCopilot 的差距在逐步缩小,但我们也非常担心出现 Sora 这种情况,即突然有一个全新的架构或算法来颠覆我们之前的努力。另一方面,从国内接受度来看,最近一些媒体包括我们自己也进行了广泛调研,发现开发者对 AI 编码工具的接受度非常高,甚至有报道称 80% 到 90% 的开发者都在采用相关工具,这就意味着这种生产力工具对开发者的价值是实实在在的。


代码智能生成工具可能是业内最成功的大模型相关应用之一。我们现在跟很多客户接触,客户也觉得在基础模型的落地上需要探索很多场景,解决方案的复杂度很高,而代码模型的门槛非常低。我们发现大模型代码生成在 IDE 编码场景下非常适合当前的技术现状,因为不仅用户的接受度高,而且特别适合当前的技术现状。我认为它在这个领域的成功可能是必然。


我们最近访谈了很多企业,发现一些先驱型企业已经在思考如何使他们的代码框架和研发模式适应 AI。这可能是许多人未曾思考过的问题,如今 AI 对代码的理解方式还存在一定局限性,但我们可以通过一些调整让 AI 生成的准确率更高。


我们最近访谈的一个客户,他们的做法是让高级工程师用自然语言编写伪代码,然后将其定义好的数据和接口与自然语言注释一起交给大模型生成代码。然后初级工程师对其进行修正,这样提高了研发效率,也提升了高级工程师的价值。初级工程师的效率也得到了提升,整体上提升了专业性,不再是一个人从头到尾完成。这种方式避免了重复工作和精力浪费,企业未来可能会考虑采用所谓的

AI 原生(AI Native)研发模式。


国外一些项目已经尝试使用自然语言框架,按照 AI 理解的方式生成代码,大模型帮助生成整个工程的代码,生成的代码既有注释又有代码,这样如果出现变更,大模型可以很容易理解它自己生成的代码,形成良性循环。我认为这可能会在一年内实现,随着基础模型能力和理解力的提升以及 AI 原生编程框架的发展,可能会出现全新的代码编写模式。


观点 2:

开放模型拥有广阔的前景,大模型未来的竞争很可能是流量入口之争、是生态之争。而谷歌是否会将 Gemma 开放模型融入 Android 和 Chrome 生态是值得期待的。


陈鑫(神秀):在模型开源方面,阿里云做了很多工作,包括开源了 7B、14B 等模型,前几个月还开源了 72B 和 72B 模型的 1.5 版本。我们内部也是通过外面媒体得知有新版本的消息,之后才进行模型的升级。我觉得阿里云在开源领域非常用心,特别是在通义团队这边。


开源模型对企业,尤其是中大型企业的整体业务能力构建起到了关键作用。有了开源版本,企业可以以较低的成本进行实验,而不必花费大量资金购买商业化模型。企业可以先利用开源模型做一些实验,并结合一些 Prompt 的调优,就可以得到比较好的结果。


从我对企业的观察来看,开源对大模型产业的推进非常关键。我担忧现在模型参数量的增加会带来更大的算力需求。虽然开源模型的参数量越来越大,但企业面临的最大难题仍然是缺乏足够的算力。即使是 2B 模型的训练成本也很高,而现在很多企业甚至连推理资源都买不到,更别说进行训练了。企业需要考虑在公共云上构建训练,而不是自建。很多企业过去可能不考虑上公共云,但是现在这个问题可能会长期存在。企业需要权衡自建和使用公共云的成本,并考虑自建是否会导致错过竞争优势。


虽然现在各个厂商都在推动开源,但是将开源的价值真正落到企业的生产效益中仍然面临许多挑战。但我相信各个厂家已经意识到了这一点,并且可能会在未来几个月推出更多的芯片,希望能够解决企业面临的算力问题,包括云上算力的问题,希望我们能够尽快度过这个难关。


观点 3:


简单的标注被 AI 取代,复杂标注对“人”的要求越来越高。


陈鑫(神秀):这个话题我们非常感同身受,因为代码大模型的质量与高质量数据息息相关。提升模型本身的能力主要依赖于高质量数据,而代码领域又是一个专业的领域。过去几个月,我们花费了大量时间和资深专家去处理数据,只有将数据处理到足够好,才能获得更好的调优结果。


代码优化是一项艰巨的任务。我们需要确定有问题的代码,解决 bug 后优化的代码,优化的原因可能是风格问题、内存泄漏或安全性问题等。数据收集、处理和分析是关键,对下游任务的影响很大。我们在调整大模型以准确预测开发者行为和生成期望结果的过程中,需要处理大量数据,包括各种语言的语法分析、切分和数据构造等。预训练过程中可能会发现数据处理中的 bug,导致生成代码中出现语法错误或不合适的情况,需要返回修正。这一工作量较大且需要资深专家。


刚开始的阶段,人们可能认为数据标注不需要大量人工,会考虑使用 AI 代替,但随着深入了解,发现这些看似容易的事情实际上还是需要专家去做。未来,有经验的程序员可能会投入更多时间到企业内部的数据标注和处理,并训练企业专属的代码模型,以生成符合企业规范要求的代码。


GitHub Copilot 过去一直未推出企业个性化套件,直到最近才推出了类似于私有化模型的训练方法,通义灵码的个性化套件也将在 4 月份上线。我们预测接下来的趋势是,各个企业的员工可能都在尝试使用 AI 工具进行编码,随后各公司可能需要专人投入到数据处理和标注,以训练企业私有模型。


对于专家和工程师来说,尤其是那些曾经从事代码框架、中间件、规范、基础 SDK 和 API 开发的人,他们首先会将这些内容编写出来,然后将这些内容融入到大模型中,以便所有人都能从代码生成中受益,这是未来各企业需要考虑的重要问题。


《AIGC+软件开发新范式》--03.微调工程师岗位可能并不存在, 但使用 AI 编码工具已经成为刚需(2):https://developer.aliyun.com/article/1537626

相关文章
|
2月前
|
云安全 人工智能 安全
阿里云欧阳欣:AI时代下的安全新范式
2024 云栖大会技术主论坛重磅发布
743 4
阿里云欧阳欣:AI时代下的安全新范式
|
2天前
|
机器学习/深度学习 人工智能 自然语言处理
当前AI大模型在软件开发中的创新应用与挑战
2024年,AI大模型在软件开发领域的应用正重塑传统流程,从自动化编码、智能协作到代码审查和测试,显著提升了开发效率和代码质量。然而,技术挑战、伦理安全及模型可解释性等问题仍需解决。未来,AI将继续推动软件开发向更高效、智能化方向发展。
|
8天前
|
机器学习/深度学习 人工智能 自然语言处理
当前AI大模型在软件开发中的创新应用与挑战
【10月更文挑战第31天】2024年,AI大模型在软件开发领域的应用取得了显著进展,从自动化代码生成、智能代码审查到智能化测试,极大地提升了开发效率和代码质量。然而,技术挑战、伦理与安全问题以及模型可解释性仍是亟待解决的关键问题。开发者需不断学习和适应,以充分利用AI的优势。
|
8天前
|
人工智能 安全 测试技术
探索AI在软件开发中的应用:提升开发效率与质量
【10月更文挑战第31天】在快速发展的科技时代,人工智能(AI)已成为软件开发领域的重要组成部分。本文探讨了AI在代码生成、缺陷预测、自动化测试、性能优化和CI/CD中的应用,以及这些应用如何提升开发效率和产品质量。同时,文章也讨论了数据隐私、模型可解释性和技术更新等挑战。
|
8天前
|
机器学习/深度学习 人工智能 测试技术
革命来临:AI如何彻底颠覆传统软件开发的每一个环节
【10月更文挑战第32天】本文探讨了AI技术如何重塑软件开发行业,从需求分析、设计、编码、测试到项目管理,AI的应用不仅提高了开发效率,还提升了软件质量和用户体验。通过对比传统方法与AI驱动的新方法,展示了AI在各个阶段的具体应用和优势。
23 3
AI销售管理软件开发,AI 销售助手:复制销冠能力的神奇利器
在商业竞争激烈的今天,如何将销冠的能力复制给普通销售人员是许多公司的梦想。如今,“AI 销售助手” 通过多维度分析客户痛点,精准生成客户画像,帮助销售人员量身定制销售方案,显著提升成交率,使普通销售人员也能成为销售冠军,为企业创造巨大价值。
|
17天前
|
机器学习/深度学习 人工智能 监控
探索 AI 在软件开发中的新角色:代码审查与质量保证
【10月更文挑战第22天】本文探讨了AI在软件开发中的新角色,特别是在代码审查和质量保证方面。AI通过静态代码分析、代码风格一致性检查和历史数据学习,提高代码审查的效率和准确性。在质量保证中,AI还能够自动生成测试用例、监控应用性能并持续优化。文章还讨论了AI在软件开发中的实践应用、挑战与机遇,以及实施的最佳实践。
|
14天前
|
机器学习/深度学习 人工智能 测试技术
探索AI在软件开发中的应用:提升效率与创新
【10月更文挑战第25天】本文探讨了AI在软件开发中的应用,包括自动化测试、代码生成与优化、智能项目管理等方面,介绍了TensorFlow、PyTorch和GitHub Copilot等实用工具,展望了AI在未来的潜力,并强调了AI对提升开发效率和创新能力的重要性。
|
20天前
|
机器学习/深度学习 人工智能 测试技术
探索 AI 驱动的软件开发:未来技术的新趋势
【10月更文挑战第19天】本文探讨了人工智能(AI)在软件开发中的应用现状和技术优势,包括代码生成、缺陷检测、自动化测试和性能优化。AI 可以提高开发效率、减少人为错误、加速创新并持续学习。文章还讨论了实施 AI 驱动开发的挑战和最佳实践,强调了数据管理和技能培训的重要性。
|
27天前
|
人工智能 自然语言处理
从迷茫到精通:揭秘模型微调如何助你轻松驾驭AI新热点,解锁预训练模型的无限潜能!
【10月更文挑战第13天】本文通过简单的问题解答形式,结合示例代码,详细介绍了模型微调的全流程。从选择预训练模型、准备新任务数据集、设置微调参数,到进行微调训练和评估调优,帮助读者全面理解模型微调的技术细节和应用场景。
63 6