通义千问2(Qwen2)大语言模型在PAI-QuickStart的微调、评测与部署实践

本文涉及的产品
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
模型训练 PAI-DLC,5000CU*H 3个月
交互式建模 PAI-DSW,每月250计算时 3个月
简介: 阿里云的人工智能平台PAI,作为一站式的机器学习和深度学习平台,对Qwen2模型系列提供了全面的技术支持。无论是开发者还是企业客户,都可以通过PAI-QuickStart轻松实现Qwen2系列模型的微调、评测和快速部署。

Qwen2(通义千问2)是阿里云最近推出的开源大型语言模型系列,相比2月推出的Qwen1.5,Qwen2实现了整体性能的代际飞跃,大幅提升了代码、数学、推理、指令遵循、多语言理解等能力。其中,Qwen2系列包含5个尺寸的预训练和指令微调模型,Qwen2-0.5B、Qwen2-1.5B、Qwen2-7B、Qwen2-57B-A14B和Qwen2-72B,其中,Qwen2-57B-A14B为混合专家模型(MoE)。Qwen2所有尺寸模型都使用了GQA(分组查询注意力)机制,以便让用户体验到GQA带来的推理加速和显存占用降低的优势。

阿里云的人工智能平台PAI,作为一站式的机器学习和深度学习平台,对Qwen2模型系列提供了全面的技术支持。无论是开发者还是企业客户,都可以通过PAI-QuickStart轻松实现Qwen2系列模型的微调、评测和快速部署。

PAI-QuickStart 介绍

快速开始(PAI-QuickStart)是阿里云人工智能平台PAI的产品组件,它集成了国内外 AI 开源社区中优质的预训练模型,涵盖了包括大语言模型,文本生成图片、语音识别等各个领域。通过 PAI 对于这些模型的适配,用户可以通过零代码和 SDK 的方式实现从训练到部署再到推理的全过程,大大简化了模型的开发流程,为开发者和企业用户带来了更快、更高效、更便捷的 AI 开发和应用体验。

运行环境要求

  • 本示例目前支持在阿里云北京、上海、深圳、杭州、乌兰察布等多地域,使用PAI-QuickStart产品运行。
  • 资源配置要求:
  • Qwen2-0.5B/1.5B/7B量级模型:最低使用V100/P100/T4(16GB显存)及以上卡型运行训练任务;
  • Qwen1.5-72B量级模型:最低使用A100(80GB显存)及以上卡型运行训练任务。

通过PAI-QuickStart使用模型

开发者可以在 PAI 控制台的“快速开始”入口,找到Qwen2系列模型,以Qwen2-7B-Instruct为例,模型卡片如下图所示:

image.png

模型部署和调用

PAI 提供的Qwen2-7B-Instruct预置了模型的部署配置信息,用户仅需提供推理服务的名称以及部署配置使用的资源信息即可将模型部署到PAI-EAS推理服务平台。当前模型需要使用公共资源组进行部署。

image.png

部署的推理服务支持使用ChatLLM WebUI进行实时交互,示例如下:

image.png

推理服务支持以OpenAI API兼容的方式调用,具体可见以下的Python SDK的示例。

模型微调训练

PAI 为Qwen2-7B-Instruct模型配置了微调算法,支持用户以开箱即用得方式对Qwen2-7B-Instruct进行微调。训练算法支持使用 Json 格式输入,每条数据由问题、答案组成,分用“instruction”、“output”字段表示,例如:

[
    {
        "instruction": "你是一个心血管科医生,请根据患者的问题给出建议:我患高血压五六年啦,天天喝药吃烦啦,哪种东西能根治高血压,高血压克星是什么?",
        "output": "高血压的患者可以吃许多新鲜的水果蔬菜或者是芹菜山药之类的食物,可以起些降血压的作用,另外高血压的患者平时也应当注意低盐,低脂,低胆固醇饮食,适当的实施体育运动和锻练高血压的患者还应当在医生的指导下口服降血压的药物,断然不可擅自停药,防止对血压引发影响。"    
     },
    {
        "instruction": "你是一个呼吸科医生,请根据患者的问题给出建议:风寒感冒咳白痰怎么治疗?",
        "output": "风寒感冒,咳有白痰的患者,主要症咳嗽痰多色白量多,兼具胸脘作闷,鼻塞,流清涕,全身酸痛,易疲劳等症状。临床诊断上常用杏苏散和二陈丸实施治疗。在用药物治疗的同时,应忌食辛辣刺激性的食物和寒凉性食物,多吃易消化营养丰富的食物,宜清淡饮食,留意歇息。"    
     }
]

当完成数据的准备,用户可以将数据上传到对象存储 OSS Bucket 中。算法需要使用V100/P00/T4(16GB显存)的GPU资源,请确保选择使用的资源配额内有充足的计算资源。

image.png

训练算法支持的超参信息如下,用户可以根据使用的数据,计算资源等调整超参,或是使用算法默认配置的超参。

超参数

默认值

类型

含义

learning_rate

5e-5

float

模型训练的学习率

num_train_epochs

1

int

训练轮次

per_device_train_batch_size

1

int

每张GPU卡在一次训练迭代的数据量

seq_length

128

int

文本序列长度

lora_dim

32

int

LoRA维度(当lora_dim>0时,使用LoRA/QLoRA轻量化训练)

lora_alpha

32

int

LoRA权重(当lora_dim>0时,使用LoRA/QLoRA轻量化训练,该参数生效)

load_in_4bit

true

bool

模型是否以4比特加载(当lora_dim>0,load_in_4bit为true且load_in_8bit为false时,使用4比特QLoRA轻量化训练)

load_in_8bit

false

bool

模型是否以8比特加载(当lora_dim>0,load_in_4bit为false且load_in_8bit为true时,使用8比特QLoRA轻量化训练)

gradient_accumulation_steps

8

int

梯度累积步数

apply_chat_template

true

bool

算法是否为训练数据加上模型默认的chat template

以Qwen2系列模型为例,格式为

  • 问题:<|im_end|>\n<|im_start|>user\n + instruction + <|im_end|>\n
  • 答案:<|im_start|>assistant\n + output + <|im_end|>\n

system_prompt

true

string

模型训练使用的系统提示语,默认为You are a helpful assistant

点击“训练”按钮,PAI-QuickStart 开始进行训练,用户可以查看训练任务状态和训练日志。

image.png

如果需要将模型部署至PAI-EAS,可以在同一页面的模型部署卡面选择资源组,并且点击“部署”按钮实现一键部署。模型调用方式和上文直接部署模型的调用方式相同。

如果需要评测微调后模型的性能,可以从任务页面右上角评测按钮进入评测页。详情见下一节:模型评测。

模型评测

PAI 为Qwen2-7B-Instruct模型配置了评测算法,支持用户以开箱即用得方式对Qwen2-7B-Instruc以及微调后模型进行评测。通过评测能帮助用户和其他模型做性能对比,更能指导用户进行精准地模型选择和优化。

模型评测入口:

从“快速开始”页面完成Qwen2-7B-Instruct开源模型的评测

image.png

从训练任务详情页完成微调后模型的评测

image.png

模型评测支持自定义数据集评测和公开数据集评测:

image.png

  • 自定义数据集评测

对于自定义数据集评测,我们使用NLP领域标准的文本匹配方式,计算模型输出结果和真实结果的匹配度,值越大,模型越好。使用该评测方式,基于自己场景的独特数据,可以评测所选模型是否适合自己的场景。

评测需要提供JSONL格式的评测集文件,每条数据使用question标识问题列,answer标识答案列,例如:

[{"question": "中国发明了造纸术,是否正确?", "answer": "正确"}]
[{"question": "中国发明了火药,是否正确?", "answer": "正确"}]

符合格式要求的评测集,可自行上传至OSS,并创建自定义数据集,详情参见上传OSS文件创建及管理数据集
之后选择评测结果输出路径,并根据系统推荐选择相应计算资源,最后提交评测任务。等待任务完成,在任务页面查看评测结果(模型在ROUGE和BLEU系列指标上的得分):

image.png


  • 公开数据集评测

在公开数据集评测中,我们通过对开源的评测数据集按领域分类,对大模型进行综合能力评估,例如数学能力、知识能力、推理能力等,值越大,模型越好。目前PAI维护了MMLUTriviaQAHellaSwagGSM8KC-EvalTruthfulQA,其他公开数据集陆续接入中。
无需准备数据,直接选择PAI提供的公开数据集、评测结果输出路径、计算资源即可提交评测任务。等待任务完成,在任务页面查看评测结果(模型在各个公开数据集的得分情况,其中每个公开数据集的评测范围详见数据集官方介绍):

image.png

通过Python SDK使用

PAI 提供了Python SDK,支持开发者方便得使用Python在PAI完成模型的开发到上线的。通过PAI Python SDK,开发者可以轻松调用PAI-快速开始提供的模型,完成相应模型的微调训练和部署。

部署推理服务的示例代码如下:

from pai.model import RegisteredModel
from openai import OpenAI
# 获取PAI提供的模型
model = RegisteredModel(
    model_name="qwen2-7b-instruct",
    model_provider="pai"
)
# 直接部署模型
predictor = model.deploy(
    service="qwen2_7b_instruct_example"
)
# 构建openai client,使用的OPENAI_BASE_URL为: <ServiceEndpint> + "/v1/"
openai_client: OpenAI = predictor.openai()
# 通过openai SDK调用推理服务
resp = openai_client.chat.completions.create(
    messages=[
        {"role": "system", "content": "You are a helpful assistant."},
        {"role": "user", "content": "What is the meaning of life?"},
    ],
    # 默认的model name为"default"
    model="default"
)
print(resp.choices[0].message.content)
# 测试完成之后,删除推理服务
predictor.delete_service()

微调训练的示例代码如下:

# 获取模型的微调训练算法
est = model.get_estimator()
# 获取PAI提供的公共读数据和预训练模型
training_inputs = model.get_estimator_inputs()
# 使用用户自定义数据
# training_inputs.update(
#     {
#         "train": "<训练数据集OSS或是本地路径>",
#         "validation": "<验证数据集的OSS或是本地路径>"
#     }
# )
# 使用默认数据提交训练任务
est.fit(
    inputs=training_inputs
)
# 查看训练产出模型的OSS路径
print(est.model_data())

通过快速开始的模型卡片详情页,用户可以通过“在DSW打开”入口,获取一个完整的Notebooks示例,了解如何通过PAI Python SDK使用的细节。

结论

Qwen2(通义千问2)的推出标志着阿里云在开源大语言模型领域的最新进展。这个系列推出了不同规模的开源模型,可广泛用于多样化的下游应用场景。开发者可以借助PAI-QuickStart轻松地对Qwen2模型进行定制和部署。此外,PAI QuickStart还汇集了一系列先进的模型,覆盖多个专业领域,欢迎广大开发者们体验和应用这些丰富的资源。

相关资源链接:

  • Qwen2介绍:

https://qwenlm.github.io/zh/blog/qwen2/

  • PAI 快速开始:

https://help.aliyun.com/zh/pai/user-guide/quick-start-overview

  • PAI Python SDK Github:

https://github.com/aliyun/pai-python-sdk

相关实践学习
使用PAI-EAS一键部署ChatGLM及LangChain应用
本场景中主要介绍如何使用模型在线服务(PAI-EAS)部署ChatGLM的AI-Web应用以及启动WebUI进行模型推理,并通过LangChain集成自己的业务数据。
机器学习概览及常见算法
机器学习(Machine Learning, ML)是人工智能的核心,专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能,它是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域。 本课程将带你入门机器学习,掌握机器学习的概念和常用的算法。
相关文章
|
1月前
|
人工智能 自然语言处理 前端开发
SpringBoot + 通义千问 + 自定义React组件:支持EventStream数据解析的技术实践
【10月更文挑战第7天】在现代Web开发中,集成多种技术栈以实现复杂的功能需求已成为常态。本文将详细介绍如何使用SpringBoot作为后端框架,结合阿里巴巴的通义千问(一个强大的自然语言处理服务),并通过自定义React组件来支持服务器发送事件(SSE, Server-Sent Events)的EventStream数据解析。这一组合不仅能够实现高效的实时通信,还能利用AI技术提升用户体验。
163 2
|
7天前
|
机器学习/深度学习 数据采集 人工智能
探索机器学习:从理论到Python代码实践
【10月更文挑战第36天】本文将深入浅出地介绍机器学习的基本概念、主要算法及其在Python中的实现。我们将通过实际案例,展示如何使用scikit-learn库进行数据预处理、模型选择和参数调优。无论你是初学者还是有一定基础的开发者,都能从中获得启发和实践指导。
17 2
|
8天前
|
机器学习/深度学习 数据采集 人工智能
探索机器学习:从理论到实践
【10月更文挑战第35天】在这篇文章中,我们将深入探讨机器学习的世界。我们将从基础理论开始,然后逐步过渡到实际应用,最后通过代码示例来展示如何实现一个简单的机器学习模型。无论你是初学者还是有经验的开发者,这篇文章都将为你提供有价值的信息和见解。
|
17天前
|
人工智能 边缘计算 自然语言处理
DistilQwen2:通义千问大模型的知识蒸馏实践
DistilQwen2 是基于 Qwen2大模型,通过知识蒸馏进行指令遵循效果增强的、参数较小的语言模型。本文将介绍DistilQwen2 的技术原理、效果评测,以及DistilQwen2 在阿里云人工智能平台 PAI 上的使用方法,和在各开源社区的下载使用教程。
|
1月前
|
机器学习/深度学习 数据可视化 数据挖掘
机器学习中空间和时间自相关的分析:从理论基础到实践应用
空间和时间自相关是数据分析中的重要概念,揭示了现象在空间和时间维度上的相互依赖关系。本文探讨了这些概念的理论基础,并通过野火风险预测的实际案例,展示了如何利用随机森林模型捕捉时空依赖性,提高预测准确性。
46 0
机器学习中空间和时间自相关的分析:从理论基础到实践应用
|
1月前
|
机器学习/深度学习 算法 Python
探索机器学习中的决策树算法:从理论到实践
【10月更文挑战第5天】本文旨在通过浅显易懂的语言,带领读者了解并实现一个基础的决策树模型。我们将从决策树的基本概念出发,逐步深入其构建过程,包括特征选择、树的生成与剪枝等关键技术点,并以一个简单的例子演示如何用Python代码实现一个决策树分类器。文章不仅注重理论阐述,更侧重于实际操作,以期帮助初学者快速入门并在真实数据上应用这一算法。
|
1月前
|
机器学习/深度学习 算法 PyTorch
【机器学习】大模型环境下的应用:计算机视觉的探索与实践
【机器学习】大模型环境下的应用:计算机视觉的探索与实践
56 1
|
1月前
|
机器学习/深度学习 数据采集 人工智能
探索机器学习:从理论到实践
【10月更文挑战第8天】在这篇文章中,我们将一起踏上一段旅程,探索机器学习的奥秘。我们首先会了解机器学习的基本概念,然后深入其理论基础,最后通过代码示例,将理论应用于实践。无论你是初学者还是有经验的开发者,这篇文章都将为你提供新的视角和深入的理解。
46 0
|
4天前
|
机器学习/深度学习 人工智能 算法
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
手写数字识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Flask框架,开发网页端操作平台,实现用户上传一张图片识别其名称。
21 0
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
【MM2024】阿里云 PAI 团队图像编辑算法论文入选 MM2024
阿里云人工智能平台 PAI 团队发表的图像编辑算法论文在 MM2024 上正式亮相发表。ACM MM(ACM国际多媒体会议)是国际多媒体领域的顶级会议,旨在为研究人员、工程师和行业专家提供一个交流平台,以展示在多媒体领域的最新研究成果、技术进展和应用案例。其主题涵盖了图像处理、视频分析、音频处理、社交媒体和多媒体系统等广泛领域。此次入选标志着阿里云人工智能平台 PAI 在图像编辑算法方面的研究获得了学术界的充分认可。
【MM2024】阿里云 PAI 团队图像编辑算法论文入选 MM2024

热门文章

最新文章

相关产品

  • 人工智能平台 PAI