基于YOLOv8与ByteTrack的车辆行人多目标检测与追踪系统【python源码+Pyqt5界面+数据集+训练代码】深度学习实战、目标追踪、运动物体追踪

简介: 基于YOLOv8与ByteTrack的车辆行人多目标检测与追踪系统【python源码+Pyqt5界面+数据集+训练代码】深度学习实战、目标追踪、运动物体追踪


基本功能演示

摘要:车辆行人多目标检测与追踪系统结合了先进的YOLOv8目标检测技术与ByteTrack多目标跟踪算法,能够在实时视频画面中准确地检测并跟踪行人与车辆。这一系统对于改善交通安全、提高城市监控效率以及增强公共安全管理具有显著的重要性。本文基于YOLOv8深度学习框架,通过5607张图片,训练了一个进行车辆与行人的目标检测模型,准确率高达94%;然后结合ByteTrack多目标跟踪算法,实现了目标的追踪效果。最终基于此开发了一款带UI界面的车辆行人多目标检测与追踪系统,可用于实时检测场景中的车辆与行人检测追踪,可以更加方便的进行功能展示。该系统是基于pythonPyQT5开发的,支持视频以及摄像头进行多目标检测追踪,也可选择指定目标追踪,支持保存追踪结果视频。本文提供了完整的Python代码和使用教程,给感兴趣的小伙伴参考学习,完整的代码资源文件获取方式见文末


前言

车辆行人多目标检测与追踪系统结合了先进的YOLOv8目标检测技术ByteTrack多目标跟踪算法,能够在实时视频画面中准确地检测并跟踪行人与车辆。这一系统对于改善交通安全、提高城市监控效率以及增强公共安全管理具有显著的重要性。实时的追踪可以帮助相关部门快速响应各种交通和安全事件,降低事故发生风险,并为城市交通规划和管理提供数据支持。

车辆行人多目标检测与追踪系统的应用场景主要包括

交通监控:实时监测城市交通流量、行人穿行情况,分析交通拥堵,优化交通信号控制。

事故分析与应对:在交通事故发生时提供准确的事故记录,辅助事故原因分析和快速响应。

安全监督:用于公共场所和重要设施周边的安全监控,检测可疑行为,预防犯罪行为的发生。

自动驾驶辅助系统:整合至自动驾驶系统中,帮助车辆更好地理解周边环境,避免与行人和其他车辆的碰撞。

城市规划:通过长期数据收集分析人流和车流模式,为城市规划和基础设施建设提供决策支持。

零售与商业分析:在商业区域监测人流和车流量,为零售和商业活动的布局提供依据。

总结来说,车辆行人多目标检测与追踪系统的应用可以在多个层面提高城市管理和居民的生活质量。该系统能够为交通安全和城市安全提供有力支撑,是智慧城市建设和智能交通系统中不可或缺的一部分。通过对实时视频画面的深度分析,该系统不仅可以预防和减少交通事故,还能为未来城市的可持续发展提供数据驱动的见解。

博主通过搜集车辆与行人的相关数据图片,根据YOLOv8的目标检测与ByteTrack多目标追踪技术,基于python与Pyqt5开发了一款界面简洁的车辆行人多目标检测与追踪系统,可支持图片、视频以及摄像头检测,同时可以将图片或者视频检测结果进行保存本文详细的介绍了此系统的核心功能以及所使用到的技术原理与制作流程。

软件初始界面如下图所示:

检测结果界面如下:

一、软件核心功能介绍及效果演示

软件主要功能

1. 可进行车辆行人多目标检测与追踪,也可以指定目标进行追踪
2. 可实时显示检测画面中的车辆与行人数目
3. 支持图片、视频及摄像头进行检测,同时支持图片的批量检测
4. 界面可实时显示目标位置目标总数置信度用时等信息;
5. 支持图片或者视频检测结果保存

界面参数设置说明

  1. 显示追踪轨迹:用于设置检测的视频中是否显示目标追踪轨迹,默认勾选:表示显示追踪轨迹,不勾选则不显示追踪轨迹;
  2. 显示检测框:用于设置检测的视频中是否显示目标检测框与标签,默认勾选:表示显示检测框与标签,不勾选则不显示检测框与标签;
  3. 置信度阈值:也就是目标检测时的conf参数,只有检测出的目标置信度大于该值,结果才会显示;
  4. 交并比阈值:也就是目标检测时的iou参数,只有目标检测框的交并比大于该值,结果才会显示;

IoU:全称为Intersection over

Union,表示交并比。在目标检测中,它用于衡量模型生成的候选框与原标记框之间的重叠程度。IoU值越大,表示两个框之间的相似性越高。通常,当IoU值大于0.5时,认为可以检测到目标物体。这个指标常用于评估模型在特定数据集上的检测准确度。

显示追踪轨迹显示检测框选项的功能效果如下:

(1)图片检测演示

点击打开图片按钮,选择需要检测的图片,或者点击打开文件夹按钮,选择需要批量检测图片所在的文件夹,操作演示如下:

点击目标下拉框后,可以选定指定目标的结果信息进行显示。 点击保存按钮,会对视频检测结果进行保存,存储路径为:save_data目录下。

点击表格中的指定行,界面会显示该行表格所写的信息内容。

注:1.右侧目标位置默认显示置信度最大一个目标位置。所有检测结果均在左下方表格中显示。

单个图片检测操作如下:

批量图片检测操作如下:

(2)视频检测演示

1.点击打开视频图标,打开选择需要检测的视频,就会自动显示检测结果。再次点击该按钮,会关闭视频

2.点击目标选择下拉框,可以选择指定的目标进行追踪

3.点击保存按钮,会对视频检测结果进行保存,存储路径为:save_data目录下。

(3)摄像头检测演示

点击打开摄像头图标,可以打开摄像头,可以实时进行检测,再次点击该按钮,可关闭摄像头

(4)保存图片与视频检测结果

点击保存按钮后,会将当前选择的图片【含批量图片】或者视频的检测结果进行保存。检测的图片与视频结果会存储在save_data目录下。

保存的检测内容如下:

二、目标检测模型的训练、评估与推理

1.YOLOv8的基本原理

YOLOv8是一种前沿的目标检测技术,它基于先前YOLO版本在目标检测任务上的成功,进一步提升了性能和灵活性。主要的创新点包括一个新的骨干网络、一个新的 Ancher-Free 检测头和一个新的损失函数,可以在从 CPU 到 GPU 的各种硬件平台上运行

其主要网络结构如下:

2. 数据集准备与训练

通过网络上搜集关于车辆行人的各类图片,并使用LabelMe标注工具对每张图片中的目标边框(Bounding Box)及类别进行标注。一共包含5607张图片,其中训练集包含4485张图片验证集包含1122张图片,部分图像及标注如下图所示。

图片数据的存放格式如下,在项目目录中新建datasets目录,同时将检测的图片分为训练集与验证集放入CarPersonData目录下。

同时我们需要新建一个data.yaml文件,用于存储训练数据的路径及模型需要进行检测的类别。YOLOv8在进行模型训练时,会读取该文件的信息,用于进行模型的训练与验证。data.yaml的具体内容如下:

# train and val data as 1) directory: path/images/, 2) file: path/images.txt, or 3) list: [path1/images/, path2/images/]
train: E:\MyCVProgram\CarPersonTrack\datasets\CarPersonData\images\train
val: E:\MyCVProgram\CarPersonTrack\datasets\CarPersonData\images\val
# number of classes
nc: 2
# class names
names: ['person', 'car']

注:train与val后面表示需要训练图片的路径,建议直接写自己文件的绝对路径。

数据准备完成后,通过调用train.py文件进行模型训练,epochs参数用于调整训练的轮数,batch参数用于调整训练的批次大小【根据内存大小调整,最小为1】,代码如下:

# 加载模型
model = YOLO("yolov8n.pt")  # 加载预训练模型
# Use the model
if __name__ == '__main__':
    # Use the model
    results = model.train(data='datasets/CarPersonData/data.yaml', epochs=250, batch=4)  # 训练模型
    # 将模型转为onnx格式
    # success = model.export(format='onnx')

3. 训练结果评估

在深度学习中,我们通常用损失函数下降的曲线来观察模型训练的情况。YOLOv8在训练时主要包含三个方面的损失:定位损失(box_loss)、分类损失(cls_loss)和动态特征损失(dfl_loss),在训练结束后,可以在runs/目录下找到训练过程及结果文件,如下所示:

各损失函数作用说明:

定位损失box_loss:预测框与标定框之间的误差(GIoU),越小定位得越准;

分类损失cls_loss:计算锚框与对应的标定分类是否正确,越小分类得越准;

动态特征损失(dfl_loss):DFLLoss是一种用于回归预测框与目标框之间距离的损失函数。在计算损失时,目标框需要缩放到特征图尺度,即除以相应的stride,并与预测的边界框计算Ciou Loss,同时与预测的anchors中心点到各边的距离计算回归DFLLoss。这个过程是YOLOv8训练流程中的一部分,通过计算DFLLoss可以更准确地调整预测框的位置,提高目标检测的准确性。

本文训练结果如下:

我们通常用PR曲线来体现精确率和召回率的关系,本文训练结果的PR曲线如下。mAP表示Precision和Recall作为两轴作图后围成的面积,m表示平均,@后面的数表示判定iou为正负样本的阈值。mAP@.5:表示阈值大于0.5的平均mAP,可以看到本文模型两类目标检测的mAP@0.5平均值为0.94,结果还是非常不错的。

4. 检测结果识别

模型训练完成后,我们可以得到一个最佳的训练结果模型best.pt文件,在runs/trian/weights目录下。我们可以使用该文件进行后续的推理检测。

图片检测代码如下:

# 所需加载的模型目录
path = 'models/best.pt'
# 需要检测的图片地址
img_path = "TestFiles/car_data_1_4648.jpg"
# 加载预训练模型
# conf  0.25  object confidence threshold for detection
# iou 0.7 intersection over union (IoU) threshold for NMS
model = YOLO(path, task='detect')
# model = YOLO(path, task='detect',conf=0.5)
# 检测图片
results = model(img_path)
res = results[0].plot()
cv2.imshow("YOLOv8 Detection", res)
cv2.waitKey(0)

执行上述代码后,会将执行的结果直接标注在图片上,结果如下:

三、使用ByteTrack进行目标追踪

ByteTrack算法简介

论文地址:https://arxiv.org/abs/2110.06864

源码地址:https://github.com/ifzhang/ByteTrack

ByteTrack算法是一种十分强大且高效的追踪算法,和其他非ReID的算法一样,仅仅使用目标追踪所得到的bbox进行追踪。追踪算法使用了卡尔曼滤波预测边界框,然后使用匈牙利算法进行目标和轨迹间的匹配。

ByteTrack算法的最大创新点就是对低分框的使用,作者认为低分框可能是对物体遮挡时产生的框,直接对低分框抛弃会影响性能,所以作者使用低分框对追踪算法进行了二次匹配,有效优化了追踪过程中因为遮挡造成换id的问题。

  • 没有使用ReID特征计算外观相似度
  • 非深度方法,不需要训练
  • 利用高分框和低分框之间的区别和匹配,有效解决遮挡问题

ByteTrack与其他追踪算法的对比如下图所示,可以看到ByteTrack的性能还是相当不错的。

ByteTrack的实现代码如下:

class ByteTrack:
    """
    Initialize the ByteTrack object.
    Parameters:
        track_thresh (float, optional): Detection confidence threshold
            for track activation.
        track_buffer (int, optional): Number of frames to buffer when a track is lost.
        match_thresh (float, optional): Threshold for matching tracks with detections.
        frame_rate (int, optional): The frame rate of the video.
    """
    def __init__(
        self,
        track_thresh: float = 0.25,
        track_buffer: int = 30,
        match_thresh: float = 0.8,
        frame_rate: int = 30,
    ):
        self.track_thresh = track_thresh
        self.match_thresh = match_thresh
        self.frame_id = 0
        self.det_thresh = self.track_thresh + 0.1
        self.max_time_lost = int(frame_rate / 30.0 * track_buffer)
        self.kalman_filter = KalmanFilter()
        self.tracked_tracks: List[STrack] = []
        self.lost_tracks: List[STrack] = []
        self.removed_tracks: List[STrack] = []
    def update_with_detections(self, detections: Detections) -> Detections:
        """
        Updates the tracker with the provided detections and
            returns the updated detection results.
        Parameters:
            detections: The new detections to update with.
        Returns:
            Detection: The updated detection results that now include tracking IDs.
        """
        tracks = self.update_with_tensors(
            tensors=detections2boxes(detections=detections)
        )
        detections = Detections.empty()
        if len(tracks) > 0:
            detections.xyxy = np.array(
                [track.tlbr for track in tracks], dtype=np.float32
            )
            detections.class_id = np.array(
                [int(t.class_ids) for t in tracks], dtype=int
            )
            detections.tracker_id = np.array(
                [int(t.track_id) for t in tracks], dtype=int
            )
            detections.confidence = np.array(
                [t.score for t in tracks], dtype=np.float32
            )
        else:
            detections.tracker_id = np.array([], dtype=int)
        return detections
    def update_with_tensors(self, tensors: np.ndarray) -> List[STrack]:
        """
        Updates the tracker with the provided tensors and returns the updated tracks.
        Parameters:
            tensors: The new tensors to update with.
        Returns:
            List[STrack]: Updated tracks.
        """
        self.frame_id += 1
        activated_starcks = []
        refind_stracks = []
        lost_stracks = []
        removed_stracks = []
        class_ids = tensors[:, 5]
        scores = tensors[:, 4]
        bboxes = tensors[:, :4]
        remain_inds = scores > self.track_thresh
        inds_low = scores > 0.1
        inds_high = scores < self.track_thresh
        inds_second = np.logical_and(inds_low, inds_high)
        dets_second = bboxes[inds_second]
        dets = bboxes[remain_inds]
        scores_keep = scores[remain_inds]
        scores_second = scores[inds_second]
        class_ids_keep = class_ids[remain_inds]
        class_ids_second = class_ids[inds_second]
        if len(dets) > 0:
            """Detections"""
            detections = [
                STrack(STrack.tlbr_to_tlwh(tlbr), s, c)
                for (tlbr, s, c) in zip(dets, scores_keep, class_ids_keep)
            ]
        else:
            detections = []
        """ Add newly detected tracklets to tracked_stracks"""
        unconfirmed = []
        tracked_stracks = []  # type: list[STrack]
        for track in self.tracked_tracks:
            if not track.is_activated:
                unconfirmed.append(track)
            else:
                tracked_stracks.append(track)
        """ Step 2: First association, with high score detection boxes"""
        strack_pool = joint_tracks(tracked_stracks, self.lost_tracks)
        # Predict the current location with KF
        STrack.multi_predict(strack_pool)
        dists = matching.iou_distance(strack_pool, detections)
        dists = matching.fuse_score(dists, detections)
        matches, u_track, u_detection = matching.linear_assignment(
            dists, thresh=self.match_thresh
        )
        for itracked, idet in matches:
            track = strack_pool[itracked]
            det = detections[idet]
            if track.state == TrackState.Tracked:
                track.update(detections[idet], self.frame_id)
                activated_starcks.append(track)
            else:
                track.re_activate(det, self.frame_id, new_id=False)
                refind_stracks.append(track)
        """ Step 3: Second association, with low score detection boxes"""
        # association the untrack to the low score detections
        if len(dets_second) > 0:
            """Detections"""
            detections_second = [
                STrack(STrack.tlbr_to_tlwh(tlbr), s, c)
                for (tlbr, s, c) in zip(dets_second, scores_second, class_ids_second)
            ]
        else:
            detections_second = []
        r_tracked_stracks = [
            strack_pool[i]
            for i in u_track
            if strack_pool[i].state == TrackState.Tracked
        ]
        dists = matching.iou_distance(r_tracked_stracks, detections_second)
        matches, u_track, u_detection_second = matching.linear_assignment(
            dists, thresh=0.5
        )
        for itracked, idet in matches:
            track = r_tracked_stracks[itracked]
            det = detections_second[idet]
            if track.state == TrackState.Tracked:
                track.update(det, self.frame_id)
                activated_starcks.append(track)
            else:
                track.re_activate(det, self.frame_id, new_id=False)
                refind_stracks.append(track)
        for it in u_track:
            track = r_tracked_stracks[it]
            if not track.state == TrackState.Lost:
                track.mark_lost()
                lost_stracks.append(track)
        """Deal with unconfirmed tracks, usually tracks with only one beginning frame"""
        detections = [detections[i] for i in u_detection]
        dists = matching.iou_distance(unconfirmed, detections)
        dists = matching.fuse_score(dists, detections)
        matches, u_unconfirmed, u_detection = matching.linear_assignment(
            dists, thresh=0.7
        )
        for itracked, idet in matches:
            unconfirmed[itracked].update(detections[idet], self.frame_id)
            activated_starcks.append(unconfirmed[itracked])
        for it in u_unconfirmed:
            track = unconfirmed[it]
            track.mark_removed()
            removed_stracks.append(track)
        """ Step 4: Init new stracks"""
        for inew in u_detection:
            track = detections[inew]
            if track.score < self.det_thresh:
                continue
            track.activate(self.kalman_filter, self.frame_id)
            activated_starcks.append(track)
        """ Step 5: Update state"""
        for track in self.lost_tracks:
            if self.frame_id - track.end_frame > self.max_time_lost:
                track.mark_removed()
                removed_stracks.append(track)
        self.tracked_tracks = [
            t for t in self.tracked_tracks if t.state == TrackState.Tracked
        ]
        self.tracked_tracks = joint_tracks(self.tracked_tracks, activated_starcks)
        self.tracked_tracks = joint_tracks(self.tracked_tracks, refind_stracks)
        self.lost_tracks = sub_tracks(self.lost_tracks, self.tracked_tracks)
        self.lost_tracks.extend(lost_stracks)
        self.lost_tracks = sub_tracks(self.lost_tracks, self.removed_tracks)
        self.removed_tracks.extend(removed_stracks)
        self.tracked_tracks, self.lost_tracks = remove_duplicate_tracks(
            self.tracked_tracks, self.lost_tracks
        )
        output_stracks = [track for track in self.tracked_tracks if track.is_activated]
        return output_stracks

使用方法

1.创建ByteTrack跟踪器

# 创建跟踪器
byte_tracker = sv.ByteTrack(track_thresh=0.25, track_buffer=30, match_thresh=0.8, frame_rate=30)

2.对YOLOv8的目标检测结果进行追踪

model = YOLO(path)
results = model(frame)[0]
detections = sv.Detections.from_ultralytics(results)
detections = byte_tracker.update_with_detections(detections)

3.显示追踪结果ID、检测框及标签信息

labels = [
            f"id{tracker_id} {model.model.names[class_id]}"
            for _, _, confidence, class_id, tracker_id
            in detections
        ]
annotated_frame = frame.copy()
annotated_frame = box_annotator.annotate(
            scene=annotated_frame,
            detections=detections,
            labels=labels)

最终检测效果如下:

以上便是关于此款车辆行人多目标检测与追踪系统的原理与代码介绍。基于此模型,博主用pythonPyqt5开发了一个带界面的软件系统,即文中第二部分的演示内容,能够很好的支持图片、视频及摄像头进行检测追踪,同时支持检测结果的保存

关于该系统涉及到的完整源码、UI界面代码、数据集、训练代码、测试图片视频等相关文件,均已打包上传,感兴趣的小伙伴可以通过下载链接自行获取。


【获取方式】


本文涉及到的完整全部程序文件:包括python源码、数据集、训练代码、UI文件、测试图片视频等(见下图),获取方式见文末:

注意:该代码基于Python3.9开发,运行界面的主程序为MainProgram.py,其他测试脚本说明见上图。为确保程序顺利运行,请按照程序运行说明文档txt配置软件运行所需环境。


相关文章
|
2天前
|
前端开发 API 开发者
Python Web开发者必看!AJAX、Fetch API实战技巧,让前后端交互如丝般顺滑!
【7月更文挑战第13天】在Web开发中,AJAX和Fetch API是实现页面无刷新数据交换的关键。在Flask博客系统中,通过创建获取评论的GET路由,我们可以展示使用AJAX和Fetch API的前端实现。AJAX通过XMLHttpRequest发送请求,处理响应并在成功时更新DOM。Fetch API则使用Promise简化异步操作,代码更现代。这两个工具都能实现不刷新页面查看评论,Fetch API的语法更简洁,错误处理更直观。掌握这些技巧能提升Python Web项目的用户体验和开发效率。
15 7
|
2天前
|
算法 数据挖掘 数据处理
搜索新境界:Python二分查找变种实战,精准定位数据不是梦!
【7月更文挑战第13天】二分查找算法以O(log n)效率在有序数组中查找数据。基础算法通过不断分割数组对比中间元素。Python实现变种包括:1) 查找目标值的第一个出现位置,找到后向左搜索;2) 查找目标值的最后一个出现位置,找到后向右搜索。这些变种在数据分析和索引构建等场景中极具价值,提升处理效率。
|
6天前
|
安全 Python
告别低效编程!Python线程与进程并发技术详解,让你的代码飞起来!
【7月更文挑战第9天】Python并发编程提升效率:**理解并发与并行,线程借助`threading`模块处理IO密集型任务,受限于GIL;进程用`multiprocessing`实现并行,绕过GIL限制。示例展示线程和进程创建及同步。选择合适模型,注意线程安全,利用多核,优化性能,实现高效并发编程。
20 3
|
8天前
|
开发者 Python
Python元类实战:打造你的专属编程魔法,让代码随心所欲变化
【7月更文挑战第7天】Python的元类是编程的变形师,用于创建类的“类”,赋予代码在构建时的变形能力。
30 1
|
9天前
|
设计模式 存储 Python
Python元类大揭秘:从理解到应用,一步步构建你的编程帝国
【7月更文挑战第6天】Python元类是创建类的对象的基石,允许控制类的生成过程。通过自定义元类,可在类定义时动态添加方法或改变行为。
16 0
|
6天前
|
数据采集 大数据 数据安全/隐私保护
Python编程:如何有效等待套接字的读取与关闭
Python网络编程中,套接字事件处理至关重要。利用`selectors`模块和代理IP能增强程序的稳定性和可靠性。代码示例展示了如何通过代理连接目标服务器,注册套接字的读写事件并高效处理。在代理IP配置、连接创建、事件循环及回调函数中,实现了数据收发与连接管理,有效应对网络爬虫或聊天应用的需求,同时保护了真实IP。
Python编程:如何有效等待套接字的读取与关闭
|
1天前
|
数据挖掘 开发者 Python
如何自学Python编程?
【7月更文挑战第14天】如何自学Python编程?
16 4
|
4天前
|
Python
不容错过!Python中图的精妙表示与高效遍历策略,提升你的编程艺术感
【7月更文挑战第11天】在Python编程中,图以邻接表或邻接矩阵表示,前者节省空间,后者利于查询连接。通过字典实现邻接表,二维列表构建邻接矩阵。图的遍历包括深度优先搜索(DFS)和广度优先搜索(BFS)。DFS使用递归,BFS借助队列。这些基础技巧对于解决复杂数据关系问题,如社交网络分析或迷宫求解,至关重要,能提升编程艺术。
13 5
|
6天前
|
存储 算法 Python
震撼!Python算法设计与分析,分治法、贪心、动态规划...这些经典算法如何改变你的编程世界!
【7月更文挑战第9天】在Python的算法天地,分治、贪心、动态规划三巨头揭示了解题的智慧。分治如归并排序,将大问题拆解为小部分解决;贪心算法以局部最优求全局,如Prim的最小生成树;动态规划通过存储子问题解避免重复计算,如斐波那契数列。掌握这些,将重塑你的编程思维,点亮技术之路。
14 1
|
8天前
|
程序员 Python
从零到一,彻底掌握Python闭包与装饰器的精髓,成为编程界的隐藏Boss
【7月更文挑战第7天】探索Python编程的两大基石:闭包与装饰器。闭包是内部函数记住外部作用域的变量,如`make_multiplier_of`返回的`multiplier`,它保持对`n`的引用。装饰器则是函数工厂,接收函数并返回新函数,如`my_decorator`,它在不改变原函数代码的情况下添加日志功能。掌握这些,让代码更优雅,效率更高,助你成为编程高手。
16 3