【CV大模型SAM(Segment-Anything)】真是太强大了,分割一切的SAM大模型使用方法:可通过不同的提示得到想要的分割目标

简介: 【CV大模型SAM(Segment-Anything)】真是太强大了,分割一切的SAM大模型使用方法:可通过不同的提示得到想要的分割目标


本文主要介绍SAM模型的使用方法:如何使用不同的提示进行目标分割。而且该模型在CPU的环境下就可以快速运行,真心不错~,赶紧来试试吧

关于Segment-Anything模型的相关代码、论文PDF、预训练模型、使用方法等,我都已打包好,供需要的小伙伴交流研究,获取方式如下

关注文末名片GZH:阿旭算法与机器学习,回复:【SAM】即可获取SAM相关代码、论文、预训练模型、使用方法文档等

前言

最近GPT一直都被炒的火热,没想到这么快就见到了CV的大模型,而且拥有新数据集+新范式+超强零样本泛化能力。

虽然此次出现的CV大模型没有NLP中的GPT那么强大的效果:用一个模型就可以处理N多下游任务。但这也是一个很好的开始,也应该是CV未来的发展趋势。

SAM(Segment-Anything Model)的出现统一了分割这个任务(CV任务的一个子集)的下流应用,说明了CV的大模型是可能存在的。其肯定会对CV的研究带来巨大的变革,很多任务会被统一处理,可能再过不久,检测、分割和追踪也会被all in one了。

项目地址:https://github.com/facebookresearch/segment-anything

Demo:https://segment-anything.com/

安装运行环境

运行需要python>=3.8, 以及pytorch>=1.7和torchvision>=0.8。

安装依赖库:

pip install git+https://github.com/facebookresearch/segment-anything.git

SAM模型的使用方法

导入相关库并定义显示函数

下面导入了运行所需的第三方库,以及定义了用于展示点、方框以及分割目标的函数。

import numpy as np
import torch
import matplotlib.pyplot as plt
import cv2
def show_mask(mask, ax, random_color=False):
    if random_color:
        color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0)
    else:
        color = np.array([30/255, 144/255, 255/255, 0.6])
    h, w = mask.shape[-2:]
    mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1)
    ax.imshow(mask_image)
    
def show_points(coords, labels, ax, marker_size=375):
    pos_points = coords[labels==1]
    neg_points = coords[labels==0]
    ax.scatter(pos_points[:, 0], pos_points[:, 1], color='green', marker='*', s=marker_size, edgecolor='white', linewidth=1.25)
    ax.scatter(neg_points[:, 0], neg_points[:, 1], color='red', marker='*', s=marker_size, edgecolor='white', linewidth=1.25)   
    
def show_box(box, ax):
    x0, y0 = box[0], box[1]
    w, h = box[2] - box[0], box[3] - box[1]
    ax.add_patch(plt.Rectangle((x0, y0), w, h, edgecolor='green', facecolor=(0,0,0,0), lw=2))    

导入待分割图片

image = cv2.imread('images/truck.jpg')
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
plt.figure(figsize=(10,10))
plt.imshow(image)
plt.axis('on')
plt.show()

使用不同提示方法进行目标分割

首先,加载SAM预训练模型。【文末已将所有文件打包,感兴趣的小伙伴可自行获取

import sys
sys.path.append("..")
from segment_anything import sam_model_registry, SamPredictor
sam_checkpoint = "./models/sam_vit_b_01ec64.pth"
model_type = "vit_b"
device = "cpu"  # or  "cuda"
sam = sam_model_registry[model_type](checkpoint=sam_checkpoint)
sam.to(device=device)
predictor = SamPredictor(sam)

通过调用SamPredictor.set_image函数,将输入的图像进行编码,SamPredictor 会使用这些编码进行后续的目标分割任务。

predictor.set_image(image)

在上图车的图片上,选择一个点。点的输入格式为(x, y)和并表示出点所带有的标签1(前景点)或0(背景点)。可以输入多个点,在这里我们先只用一个点,选择的点会显示为一个五角星的标记。

方法一:使用单个提示点进行目标分割

input_point = np.array([[500, 375]])  # 标记点
input_label = np.array([1])  # 点所对应的标签
plt.figure(figsize=(10,10))
plt.imshow(image)
show_points(input_point, input_label, plt.gca())
plt.axis('on')
plt.show()  

SamPredictor.predict进行分割,模型会返回这些分割目标对应的置信度。

masks, scores, logits = predictor.predict(
    point_coords=input_point,
    point_labels=input_label,
    multimask_output=True,
)

参数说明:

point_coords: 提示的坐标点位置

point_labels: 提示点对应的类型,1前景,0背景

boxes: 提示的方框

multimask_output: 多目标输出还是但目标输出True or False

multimask_output=True (默认),SAM模型会输出3个分割目标和对应的置信度scores。这个设置主要是用于面对歧义的提示点,因为一个提示点可能在多个分割的目标内部,multimask_output=True 能够将包含该提示点的所有目标都分割出来。

如下面示例所示:2种车窗户、还有整个车均包含了五角星的提示点。

masks.shape  # (number_of_masks) x H x W
(3, 1200, 1800)
for i, (mask, score) in enumerate(zip(masks, scores)):
    plt.figure(figsize=(10,10))
    plt.imshow(image)
    show_mask(mask, plt.gca())
    show_points(input_point, input_label, plt.gca())
    plt.title(f"Mask {i+1}, Score: {score:.3f}", fontsize=18)
    plt.axis('off')
    plt.show()  

方法二:使用多个提示点进行目标分割

单个提示点通常会存在歧义的影响,因为可能多个目标均包含该点。为了得到我们想要的单个目标,我们可以在目标上进行多个点的提示,以获取该目标的分割结果。

例如下面在卡车上用2个提示点,从而直接提取出整个车的分割结果,而不是窗户。这是需要设置multimask_output=False,用于提取单个目标分割结果。

input_point = np.array([[500, 375], [1125, 625]])
input_label = np.array([1, 1])
mask_input = logits[np.argmax(scores), :, :]  # Choose the model's best mask
masks, _, _ = predictor.predict(
    point_coords=input_point,
    point_labels=input_label,
    mask_input=mask_input[None, :, :],
    multimask_output=False,
)
masks.shape
(1, 1200, 1800)
plt.figure(figsize=(10,10))
plt.imshow(image)
show_mask(masks, plt.gca())
show_points(input_point, input_label, plt.gca())
plt.axis('off')
plt.show() 

如果我们仅想得到窗户的分割结果,我们可以使用背景点(label=0,下图红的五角星)将车子的其他部分剔除掉。

input_point = np.array([[500, 375], [1125, 625]])
input_label = np.array([1, 0])
mask_input = logits[np.argmax(scores), :, :]  # Choose the model's best mask
masks, _, _ = predictor.predict(
    point_coords=input_point,
    point_labels=input_label,
    mask_input=mask_input[None, :, :],
    multimask_output=False,
)
plt.figure(figsize=(10, 10))
plt.imshow(image)
show_mask(masks, plt.gca())
show_points(input_point, input_label, plt.gca())
plt.axis('off')
plt.show() 

方法三:用方框指定一个目标进行分割

SAM模型可以用一个方框作为输入,格式为[x1,y1,x2,y2]。来进行单个目标的分割,如下面所示,通过方框对车的轮子进行分割。

input_box = np.array([425, 600, 700, 875])
masks, _, _ = predictor.predict(
    point_coords=None,
    point_labels=None,
    box=input_box[None, :],
    multimask_output=False,
)
plt.figure(figsize=(10, 10))
plt.imshow(image)
show_mask(masks[0], plt.gca())
show_box(input_box, plt.gca())
plt.axis('off')
plt.show()

方式四:将点与方框结合,进行目标分割

如下示例:将轮胎的中心轮毂部分剔除,仅得到轮胎外部。

方框用于得到轮胎;点标记为背景(input_label = np.array([0])),起到剔除作用。

input_box = np.array([425, 600, 700, 875])
input_point = np.array([[575, 750]])
input_label = np.array([0])
masks, _, _ = predictor.predict(
    point_coords=input_point,
    point_labels=input_label,
    box=input_box,
    multimask_output=False,
)
plt.figure(figsize=(10, 10))
plt.imshow(image)
show_mask(masks[0], plt.gca())
show_box(input_box, plt.gca())
show_points(input_point, input_label, plt.gca())
plt.axis('off')
plt.show()

方法五:多个方框同时输入,进行多目标分割

通过同时输入多个方框,可用于分割不同方框中的目标。下面是对车的不同目标的分割效果。

input_boxes = torch.tensor([
    [75, 275, 1725, 850],
    [425, 600, 700, 875],
    [1375, 550, 1650, 800],
    [1240, 675, 1400, 750],
], device=predictor.device)
transformed_boxes = predictor.transform.apply_boxes_torch(input_boxes, image.shape[:2])
masks, _, _ = predictor.predict_torch(
    point_coords=None,
    point_labels=None,
    boxes=transformed_boxes,
    multimask_output=False,
)
masks.shape  # (batch_size) x (num_predicted_masks_per_input) x H x W
torch.Size([4, 1, 1200, 1800])
plt.figure(figsize=(10, 10))
plt.imshow(image)
for mask in masks:
    show_mask(mask.cpu().numpy(), plt.gca(), random_color=True)
for box in input_boxes:
    show_box(box.cpu().numpy(), plt.gca())
plt.axis('off')
plt.show()

总结

以上便是SAM模型的使用方法,可以通过不同的提示方式得到不同的分割结果。总体来说,效果还是很不错的,关键是居然还可以在CPU环境下快速运行。感兴趣的小伙伴,也可以自己试试哦~


相关文章
|
机器学习/深度学习 人工智能 自然语言处理
一文尽览 | 开放世界目标检测的近期工作及简析!(基于Captioning/CLIP/伪标签/Prompt)(上)
人类通过自然监督,即探索视觉世界和倾听他人描述情况,学会了毫不费力地识别和定位物体。我们人类对视觉模式的终身学习,并将其与口语词汇联系起来,从而形成了丰富的视觉和语义词汇,不仅可以用于检测物体,还可以用于其他任务,如描述物体和推理其属性和可见性。人类的这种学习模式为我们实现开放世界的目标检测提供了一个可以学习的角度。
一文尽览 | 开放世界目标检测的近期工作及简析!(基于Captioning/CLIP/伪标签/Prompt)(上)
|
移动开发 文字识别 算法
论文推荐|[PR 2019]SegLink++:基于实例感知与组件组合的任意形状密集场景文本检测方法
本文简要介绍Pattern Recognition 2019论文“SegLink++: Detecting Dense and Arbitrary-shaped Scene Text by Instance-aware Component Grouping”的主要工作。该论文提出一种对文字实例敏感的自下而上的文字检测方法,解决了自然场景中密集文本和不规则文本的检测问题。
1958 0
论文推荐|[PR 2019]SegLink++:基于实例感知与组件组合的任意形状密集场景文本检测方法
|
3月前
|
机器学习/深度学习 JSON 算法
实例分割笔记(一): 使用YOLOv5-Seg对图像进行分割检测完整版(从自定义数据集到测试验证的完整流程)
本文详细介绍了使用YOLOv5-Seg模型进行图像分割的完整流程,包括图像分割的基础知识、YOLOv5-Seg模型的特点、环境搭建、数据集准备、模型训练、验证、测试以及评价指标。通过实例代码,指导读者从自定义数据集开始,直至模型的测试验证,适合深度学习领域的研究者和开发者参考。
1231 3
实例分割笔记(一): 使用YOLOv5-Seg对图像进行分割检测完整版(从自定义数据集到测试验证的完整流程)
|
7月前
|
编解码 计算机视觉 异构计算
【CV大模型SAM(Segment-Anything)】如何一键分割图片中所有对象?并对不同分割对象进行保存?
【CV大模型SAM(Segment-Anything)】如何一键分割图片中所有对象?并对不同分割对象进行保存?
|
7月前
|
人工智能 计算机视觉 Python
【超详细】【YOLOV8使用说明】一套框架解决CV的5大任务:目标检测、分割、姿势估计、跟踪和分类任务【含源码】(1)
【超详细】【YOLOV8使用说明】一套框架解决CV的5大任务:目标检测、分割、姿势估计、跟踪和分类任务【含源码】
【超详细】【YOLOV8使用说明】一套框架解决CV的5大任务:目标检测、分割、姿势估计、跟踪和分类任务【含源码】(1)
|
3月前
|
机器学习/深度学习 数据可视化 自动驾驶
YOLO11-seg分割:具有切片操作的SimAM注意力,魔改SimAM助力分割
本文创新地对SimAM注意力机制进行魔改,引入切片操作,显著提升了小目标特征提取能力。针对SimAM在计算整张特征图的像素差平均值时可能忽略小目标重要性的问题,通过切片操作增强了小目标的加权效果。实验结果显示,魔改后的SimAM在YOLO11-seg上的Mask mAP50从0.673提升至0.681,有效改善了小目标检测性能。
302 2
|
3月前
|
机器学习/深度学习 JSON 算法
语义分割笔记(二):DeepLab V3对图像进行分割(自定义数据集从零到一进行训练、验证和测试)
本文介绍了DeepLab V3在语义分割中的应用,包括数据集准备、模型训练、测试和评估,提供了代码和资源链接。
505 0
语义分割笔记(二):DeepLab V3对图像进行分割(自定义数据集从零到一进行训练、验证和测试)
|
7月前
|
计算机视觉
【超详细】【YOLOV8使用说明】一套框架解决CV的5大任务:目标检测、分割、姿势估计、跟踪和分类任务【含源码】(2)
【超详细】【YOLOV8使用说明】一套框架解决CV的5大任务:目标检测、分割、姿势估计、跟踪和分类任务【含源码】
|
JSON 算法 数据格式
优化cv2.findContours()函数提取的目标边界点,使语义分割进行远监督辅助标注
可以看到cv2.findContours()函数可以将目标的所有边界点都进行导出来,但是他的点存在一个问题,太过密集,如果我们想将语义分割的结果重新导出成labelme格式的json文件进行修正时,这就会存在点太密集没有办法进行修改,这里展示一个示例:没有对导出的结果进行修正,在labelme中的效果图。
255 0
|
人工智能 并行计算 数据可视化
分割一切还不够,还要检测一切、生成一切,SAM二创开始了
分割一切还不够,还要检测一切、生成一切,SAM二创开始了
337 0