【从零开始学习深度学习】15. Pytorch实战Kaggle比赛:房价预测案例【含数据集与源码】

简介: 【从零开始学习深度学习】15. Pytorch实战Kaggle比赛:房价预测案例【含数据集与源码】


1 获取和读取数据集

数据分为训练数据集测试数据集。两个数据集都包括每栋房子的特征,如街道类型、建造年份、房顶类型、地下室状况等特征值。这些特征值有连续的数字、离散的标签甚至是缺失值“na”。只有训练数据集包括了每栋房子的价格,也就是标签。

我们将通过pandas库读入并处理数据。在导入本节需要的包前请确保已安装pandas库。

%matplotlib inline
import torch
import torch.nn as nn
import numpy as np
import pandas as pd
import sys 
import d2lzh_pytorch as d2l
torch.set_default_tensor_type(torch.FloatTensor)

假设解压后的数据位于./data/house/目录,它包括两个csv文件。下面使用pandas读取这两个文件。

train_data = pd.read_csv('./data/house/train.csv')
test_data = pd.read_csv('./data/house/test.csv')

训练数据集包括1460个样本、80个特征和1个标签。

train_data.shape # 输出 (1460, 81)

测试数据集包括1459个样本和80个特征。我们需要将测试数据集中每个样本的标签预测出来。

test_data.shape # 输出 (1459, 80)

让我们来查看前4个样本的前4个特征、后2个特征和标签(SalePrice)

train_data.iloc[0:4, [0, 1, 2, 3, -3, -2, -1]]

可以看到第一个特征是Id,它能帮助模型记住每个训练样本,但难以推广到测试样本,所以我们不使用它来训练。我们将所有的训练数据和测试数据的79个特征按样本连结。

all_features = pd.concat((train_data.iloc[:, 1:-1], test_data.iloc[:, 1:]))

2 数据预处理

我们对连续数值的特征做标准化(standardization):设该特征在整个数据集上的均值为μ \muμ,标准差为σ \sigmaσ。那么,我们可以将该特征的每个值先减去μ \muμ再除以σ \sigmaσ得到标准化后的每个特征值。对于缺失的特征值,我们将其替换成该特征的均值。

numeric_features = all_features.dtypes[all_features.dtypes != 'object'].index
all_features[numeric_features] = all_features[numeric_features].apply(
    lambda x: (x - x.mean()) / (x.std()))
# 标准化后,每个数值特征的均值变为0,所以可以直接用0来替换缺失值
all_features[numeric_features] = all_features[numeric_features].fillna(0)

接下来将离散数值转成One-hot指示特征。举个例子,假设特征MSZoning里面有两个不同的离散值RL和RM,那么这一步转换将去掉MSZoning特征,并新加两个特征MSZoning_RL和MSZoning_RM,其值为0或1。如果一个样本原来在MSZoning里的值为RL,那么有MSZoning_RL=1且MSZoning_RM=0。

# dummy_na=True表示将缺失值也当作合法的特征值并为其创建指示特征
all_features = pd.get_dummies(all_features, dummy_na=True)
all_features.shape # (2919, 331)

可以看到这一步转换将特征数从79增加到了331。

最后,通过values属性得到NumPy格式的数据,并转成Tensor方便后面的训练。

n_train = train_data.shape[0]
train_features = torch.tensor(all_features[:n_train].values, dtype=torch.float)
test_features = torch.tensor(all_features[n_train:].values, dtype=torch.float)
train_labels = torch.tensor(train_data.SalePrice.values, dtype=torch.float).view(-1, 1)

3 训练模型

我们使用基本的线性回归模型和平方损失函数来训练模型。

loss = torch.nn.MSELoss()
def get_net(feature_num):
    net = nn.Linear(feature_num, 1)
    for param in net.parameters():
        nn.init.normal_(param, mean=0, std=0.01)
    return net

下面定义比赛用来评价模型的对数均方根误差。给定预测值y ^ 1 , … , y ^ n \hat y_1, \ldots, \hat y_ny^1,,y^n和对应的真实标签y 1 , … , y n y_1,\ldots, y_ny1,,yn,它的定义为

1 n ∑ i = 1 n ( log ⁡ ( y i ) − log ⁡ ( y ^ i ) ) 2 . \sqrt{\frac{1}{n}\sum_{i=1}^n\left(\log(y_i)-\log(\hat y_i)\right)^2}.n1i=1n(log(yi)log(y^i))2.

对数均方根误差的实现如下。

def log_rmse(net, features, labels):
    with torch.no_grad():
        # 将小于1的值设成1,使得取对数时数值更稳定
        clipped_preds = torch.max(net(features), torch.tensor(1.0))
        rmse = torch.sqrt(loss(clipped_preds.log(), labels.log()))
    return rmse.item()

下面的训练函数使用了Adam优化算法。相对之前使用的小批量随机梯度下降,它对学习率相对不那么敏感。

def train(net, train_features, train_labels, test_features, test_labels,
          num_epochs, learning_rate, weight_decay, batch_size):
    train_ls, test_ls = [], []
    dataset = torch.utils.data.TensorDataset(train_features, train_labels)
    train_iter = torch.utils.data.DataLoader(dataset, batch_size, shuffle=True)
    # 这里使用了Adam优化算法
    optimizer = torch.optim.Adam(params=net.parameters(), lr=learning_rate, weight_decay=weight_decay) 
    net = net.float()
    for epoch in range(num_epochs):
        for X, y in train_iter:
            l = loss(net(X.float()), y.float())
            optimizer.zero_grad()
            l.backward()
            optimizer.step()
        train_ls.append(log_rmse(net, train_features, train_labels))
        if test_labels is not None:
            test_ls.append(log_rmse(net, test_features, test_labels))
    return train_ls, test_ls

4 K KK折交叉验证

之前文章介绍了K KK折交叉验证。它将被用来选择模型设计并调节超参数。下面实现了一个函数,它返回第i折交叉验证时所需要的训练和验证数据。

def get_k_fold_data(k, i, X, y):
    # 返回第i折交叉验证时所需要的训练和验证数据
    assert k > 1
    fold_size = X.shape[0] // k
    X_train, y_train = None, None
    for j in range(k):
        idx = slice(j * fold_size, (j + 1) * fold_size)
        X_part, y_part = X[idx, :], y[idx]
        if j == i:
            X_valid, y_valid = X_part, y_part
        elif X_train is None:
            X_train, y_train = X_part, y_part
        else:
            X_train = torch.cat((X_train, X_part), dim=0)
            y_train = torch.cat((y_train, y_part), dim=0)
    return X_train, y_train, X_valid, y_valid

K KK折交叉验证中我们训练K KK次并返回训练和验证的平均误差。

def k_fold(k, X_train, y_train, num_epochs,
           learning_rate, weight_decay, batch_size):
    train_l_sum, valid_l_sum = 0, 0
    for i in range(k):
        data = get_k_fold_data(k, i, X_train, y_train)
        net = get_net(X_train.shape[1])
        train_ls, valid_ls = train(net, *data, num_epochs, learning_rate,
                                   weight_decay, batch_size)
        train_l_sum += train_ls[-1]
        valid_l_sum += valid_ls[-1]
        if i == 0:
            d2l.semilogy(range(1, num_epochs + 1), train_ls, 'epochs', 'rmse',
                         range(1, num_epochs + 1), valid_ls,
                         ['train', 'valid'])
        print('fold %d, train rmse %f, valid rmse %f' % (i, train_ls[-1], valid_ls[-1]))
    return train_l_sum / k, valid_l_sum / k

我们使用一组未经调优的超参数并计算交叉验证误差,后续可以改动这些超参数来尽可能减小平均测试误差。

k, num_epochs, lr, weight_decay, batch_size = 5, 100, 5, 0, 64
train_l, valid_l = k_fold(k, train_features, train_labels, num_epochs, lr, weight_decay, batch_size)
print('%d-fold validation: avg train rmse %f, avg valid rmse %f' % (k, train_l, valid_l))

输出:

fold 0, train rmse 0.170585, valid rmse 0.156860
fold 1, train rmse 0.162552, valid rmse 0.190944
fold 2, train rmse 0.164199, valid rmse 0.168767
fold 3, train rmse 0.168698, valid rmse 0.154873
fold 4, train rmse 0.163213, valid rmse 0.183080
5-fold validation: avg train rmse 0.165849, avg valid rmse 0.170905

有时候你会发现一组参数的训练误差可以达到很低,但是在K KK折交叉验证上的误差可能反而较高。这种现象很可能是由过拟合造成的。因此,当训练误差降低时,我们要观察K KK折交叉验证上的误差是否也相应降低。

5 预测并保存结果

下面定义预测函数。在预测之前,我们会使用完整的训练数据集来重新训练模型,并将预测结果存成提交所需要的格式。

def train_and_pred(train_features, test_features, train_labels, test_data,
                   num_epochs, lr, weight_decay, batch_size):
    net = get_net(train_features.shape[1])
    train_ls, _ = train(net, train_features, train_labels, None, None,
                        num_epochs, lr, weight_decay, batch_size)
    d2l.semilogy(range(1, num_epochs + 1), train_ls, 'epochs', 'rmse')
    print('train rmse %f' % train_ls[-1])
    preds = net(test_features).detach().numpy()
    test_data['SalePrice'] = pd.Series(preds.reshape(1, -1)[0])
    submission = pd.concat([test_data['Id'], test_data['SalePrice']], axis=1)
    submission.to_csv('./submission.csv', index=False)

设计好模型并调好超参数之后,下一步就是对测试数据集上的房屋样本做价格预测。

train_and_pred(train_features, test_features, train_labels, test_data, num_epochs, lr, weight_decay, batch_size)

输出:

train rmse 0.162085

总结

  • 通常需要对真实数据做预处理。
  • 可以使用K KK折交叉验证来选择模型并调节超参数。


相关文章
|
15天前
|
机器学习/深度学习 算法 Python
使用Python实现深度学习模型:元学习与模型无关优化(MAML)
使用Python实现深度学习模型:元学习与模型无关优化(MAML)
32 0
使用Python实现深度学习模型:元学习与模型无关优化(MAML)
|
20天前
|
机器学习/深度学习 人工智能 PyTorch
|
28天前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习中的自适应学习算法研究与应用
在深度学习领域,传统的静态模型在处理动态环境和非平稳数据时面临挑战。本文探讨了自适应学习算法在深度学习中的重要性及其应用。通过分析自适应学习算法在模型参数、损失函数和数据分布上的应用,展示了其在提升模型鲁棒性和泛化能力方面的潜力。具体讨论了几种代表性的自适应学习方法,并探索了它们在现实世界中的应用案例,从而展示了其在处理复杂问题和动态数据中的效果。
35 0
|
1天前
|
机器学习/深度学习 开发框架 自然语言处理
深度学习中的自动学习率调整方法探索与应用
传统深度学习模型中,学习率的选择对训练效果至关重要,然而其调整通常依赖于经验或静态策略。本文探讨了现代深度学习中的自动学习率调整方法,通过分析不同算法的原理与应用实例,展示了这些方法在提高模型收敛速度和精度方面的潜力。 【7月更文挑战第14天】
|
9天前
|
机器学习/深度学习 自然语言处理 语音技术
深度学习中的迁移学习:优势与应用探索
传统深度学习模型在数据不足或特定任务下表现不佳,迁移学习则通过利用预训练模型的知识来解决这一问题。本文探讨了迁移学习的基本原理、不同方法以及在实际应用中的案例分析,旨在帮助读者更好地理解和应用迁移学习技术。 【7月更文挑战第6天】
|
12天前
|
机器学习/深度学习 PyTorch TensorFlow
PAI DLC与其他深度学习框架如TensorFlow或PyTorch的异同
PAI DLC与其他深度学习框架如TensorFlow或PyTorch的异同
|
22天前
|
机器学习/深度学习 人工智能 自然语言处理
OpenCV与AI深度学习之常用AI名词解释学习
AGI:Artificial General Intelligence (通用人工智能):是指具备与人类同等或超越人类的智能,能够表现出正常人类所具有的所有智能行为。又被称为强人工智能。
30 2
|
1天前
|
机器学习/深度学习 PyTorch TensorFlow
在深度学习中,数据增强是一种常用的技术,用于通过增加训练数据的多样性来提高模型的泛化能力。`albumentations`是一个强大的Python库,用于图像增强,支持多种图像变换操作,并且可以与深度学习框架(如PyTorch、TensorFlow等)无缝集成。
在深度学习中,数据增强是一种常用的技术,用于通过增加训练数据的多样性来提高模型的泛化能力。`albumentations`是一个强大的Python库,用于图像增强,支持多种图像变换操作,并且可以与深度学习框架(如PyTorch、TensorFlow等)无缝集成。
8 0
|
12天前
|
机器学习/深度学习 TensorFlow 算法框架/工具
使用Python实现深度学习模型:迁移学习与领域自适应教程
【7月更文挑战第3天】 使用Python实现深度学习模型:迁移学习与领域自适应教程
11 0
|
1月前
|
机器学习/深度学习 算法 PyTorch
《PyTorch深度学习实践》--3梯度下降算法
《PyTorch深度学习实践》--3梯度下降算法