基本功能演示
基于YOLOv8深度学习的反光衣检测与预警系统【python源码+Pyqt5界面+数据集+训练代码】深度学习实战、目标检测、人工智能
摘要:
反光衣检测与预警系统对于确保工作人员的安全至关重要
,尤其是在视线受限或光线不足的工作环境中。反光衣可以显著提高工作人员的可见性,降低事故风险。本文基于YOLOv8深度学习框架
,通过1073
张人员穿戴反光衣及其他衣服照片
,训练了一个可检测反光衣
与其他衣物
的目标检测模型,可对画面中的人物是否穿戴反光衣进行检测,如画面中发现未穿戴反光衣的人员,会进行界面告警与报警音效提示
。基于此模型开发了一款带UI界面的反光衣检测与预警系统
,可用于实时检测画面中人物是否穿戴反光衣
,也更方便进行功能的展示。该系统是基于python
与PyQT5
开发的,支持图片
、视频
以及摄像头
进行目标检测
,并保存检测结果
。本文提供了完整的Python代码和使用教程,给感兴趣的小伙伴参考学习,完整的代码资源文件获取方式见文末。
前言
反光衣检测与预警系统对于确保工作人员的安全至关重要
,尤其是在视线受限或光线不足的工作环境中。反光衣可以显著提高工作人员的可见性,降低事故风险。此类系统的引入可以实现工作场所的自动化安全监控,及时警告那些未按规定穿戴安全装备的人员,从而提高整体的工作环境安全性。
反光衣检测与预警系统的
应用场景包括
:
施工现场
:确保所有进入施工区域的工人都穿着反光衣,以防在操作重型机械或夜间工作时发生事故。
仓库和物流中心
:在装卸货物或搬运机器附近工作的人员必须佩戴反光衣以提高其可见性。
交通路口或道路维修点
:对于交警和道路维修工人,在繁忙的交通或低光环境下工作时,提供附加的安全保障。
机场跑道维护
:确保机场地面指挥人员和维护人员在滑行道和跑道周围工作时穿戴适当的安全服。
矿区和其他危险工业地区
:在地下或昏暗的环境中工作的人员可以通过穿戴反光衣来提高安全性。
总的来说,反光衣检测与预警系统是一个创新的安全措施,它利用最新的YOLOv8深度学习框架自动检测并提醒穿戴安全设备的非遵规情况。
通过实时监控和警告,它能够有效减少工作场所的安全隐患,提高工人的保护水平,降低职业安全事故的发生率。这种技术的实施对于重视员工安全和遵守行业规定的企业来说尤为重要。随着工业4.0的到来,这一系统预计将成为各种工业和建筑行业安全管理的标准配置。
博主通过搜集人员穿戴反光衣及其他衣服照片
的相关数据,根据YOLOv8的目标检测技术,基于python与Pyqt5
开发了一款界面简洁的反光衣检测与预警系统
,可支持图片、视频以及摄像头检测
,同时可以将图片或者视频检测结果进行保存
。
软件初始界面如下图所示:
检测结果界面如下:
一、软件核心功能介绍及效果演示
软件主要功能
1. 可实时对人员穿着的反光衣
与其他衣物
这2个类别
进行检测;
2. 当画面中存在未穿反光衣
的人员时,会在界面进行告警,同时会发出警报音进行提示
;
3. 支持图片、视频及摄像头
进行检测,同时支持图片的批量检测
;
4. 界面可实时显示目标位置
、目标总数
、置信度
、用时
等信息;
5. 支持图片
或者视频
的检测结果保存
;
界面参数设置说明
置信度阈值(Conf):也就是目标检测时的conf参数,只有检测出的目标置信度大于该值,结果才会显示;
交并比阈值(IOU):也就是目标检测时的iou参数,只有目标检测框的交并比大于该值,结果才会显示;
IoU:全称为Intersection over
Union,表示交并比。在目标检测中,它用于衡量模型生成的候选框与原标记框之间的重叠程度。IoU值越大,表示两个框之间的相似性越高。通常,当IoU值大于0.5时,认为可以检测到目标物体。这个指标常用于评估模型在特定数据集上的检测准确度。
主要功能说明
(1)图片检测说明
点击打开图片
按钮,选择需要检测的图片,或者点击打开文件夹
按钮,选择需要批量检测图片所在的文件夹,操作演示如下:
点击目标下拉框后,可以选定指定目标的结果信息进行显示。
点击保存
按钮,会对检测结果进行保存,存储路径为:save_data
目录下。
注:1.右侧目标位置默认显示置信度最大一个目标位置,可用下拉框进行目标切换。所有检测结果均在左下方表格中显示。
(2)视频检测说明
点击视频
按钮,打开选择需要检测的视频,就会自动显示检测结果,再次点击可以关闭视频。
点击保存
按钮,会对视频检测结果进行保存,存储路径为:save_data
目录下。
(3)摄像头检测演示
点击打开摄像头
按钮,可以打开摄像头,可以实时进行检测,再次点击,可关闭摄像头。
(4)保存图片与视频检测结果
点击保存
按钮后,会将当前选择的图片【含批量图片】或者视频
的检测结果进行保存。检测的图片与视频结果会存储在save_data
目录下。
保存的检测结果文件如下:
二、模型的训练、评估与推理
1.YOLOv8的基本原理
YOLOv8是一种前沿的目标检测技术,它基于先前YOLO版本在目标检测任务上的成功,进一步提升了性能和灵活性,在精度和速度方面都具有尖端性能
。在之前YOLO 版本的基础上,YOLOv8 引入了新的功能和优化,使其成为广泛应用中各种物体检测任务的理想选择。主要的创新点包括一个新的骨干网络、一个新的 Ancher-Free 检测头和一个新的损失函数,可以在从 CPU 到 GPU 的各种硬件平台上运行
。
YOLO各版本性能对比:
YOLOv8网络结构如下:
2. 数据集准备与训练
本文使用的数据集为实际场景中的人员穿戴反光衣
与其他衣物
的相关图片,并使用Labelimg标注工具对每张图片中的目标边框(Bounding Box)及类别进行标注,共2个类别
:反光衣
与其他衣物
。一共包含1073张图片
,其中训练集包含866张图片
,验证集包含217张图片
。
部分图像及标注如下图所示:
数据分布如下:
图片数据的存放格式如下,在项目目录中新建datasets
目录,同时将检测的图片分为训练集与验证集放入Data
目录下。
同时我们需要新建一个data.yaml
文件,用于存储训练数据的路径及模型需要进行检测的类别。YOLOv8在进行模型训练时,会读取该文件的信息,用于进行模型的训练与验证。data.yaml
的具体内容如下:
train: E:\CVProgram\YOLOv8Detect\datasets\Data1\train val: E:\CVProgram\YOLOv8Detect\datasets\Data1\val nc: 2 names: ['ReflectiveClothes', 'OtherClothes']
注:train与val后面表示需要训练图片的路径,建议直接写自己文件的绝对路径。
数据准备完成后,通过调用train.py
文件进行模型训练,epochs
参数用于调整训练的轮数,batch
参数用于调整训练的批次大小【根据内存大小调整,最小为1】,代码如下:
#coding:utf-8 from ultralytics import YOLO import matplotlib matplotlib.use('TkAgg') # 模型配置文件 model_yaml_path = "ultralytics/cfg/models/v8/yolov8.yaml" #数据集配置文件 data_yaml_path = 'datasets/Data/data.yaml' #预训练模型 pre_model_name = 'yolov8n.pt' if __name__ == '__main__': #加载预训练模型 model = YOLO(model_yaml_path).load(pre_model_name) #训练模型 results = model.train(data=data_yaml_path, epochs=150, batch=4, name='train_v8')
3. 训练结果评估
在深度学习中,我们通常用损失函数下降的曲线来观察模型训练的情况。YOLOv8在训练时主要包含三个方面的损失:定位损失(box_loss)、分类损失(cls_loss)和动态特征损失(dfl_loss),在训练结束后,可以在runs/
目录下找到训练过程及结果文件,如下所示:
各损失函数作用说明:
定位损失box_loss
:预测框与标定框之间的误差(GIoU),越小定位得越准;
分类损失cls_loss
:计算锚框与对应的标定分类是否正确,越小分类得越准;
动态特征损失(dfl_loss)
:DFLLoss是一种用于回归预测框与目标框之间距离的损失函数。在计算损失时,目标框需要缩放到特征图尺度,即除以相应的stride,并与预测的边界框计算Ciou Loss,同时与预测的anchors中心点到各边的距离计算回归DFLLoss。这个过程是YOLOv8训练流程中的一部分,通过计算DFLLoss可以更准确地调整预测框的位置,提高目标检测的准确性。
本文训练结果如下:
我们通常用PR曲线
来体现精确率和召回率的关系,本文训练结果的PR曲线如下。mAP
表示Precision和Recall作为两轴作图后围成的面积,m表示平均,@后面的数表示判定iou为正负样本的阈值。mAP@.5:表示阈值大于0.5的平均mAP,可以看到本文模型目标检测的mAP@0.5
平均值为0.82
,结果还是很不错的。
4. 检测结果识别
模型训练完成后,我们可以得到一个最佳的训练结果模型best.pt
文件,在runs/train/weights
目录下。我们可以使用该文件进行后续的推理检测。
图片检测代码如下:
#coding:utf-8 from ultralytics import YOLO import cv2 # 所需加载的模型目录 path = 'models/best.pt' # 需要检测的图片地址 img_path = "TestFiles/000418.jpg" # 加载预训练模型 # conf 0.25 object confidence threshold for detection # iou 0.7 intersection over union (IoU) threshold for NMS model = YOLO(path, task='detect') # model = YOLO(path, task='detect',conf=0.5) # 检测图片 results = model(img_path) print(results) res = results[0].plot() # res = cv2.resize(res,dsize=None,fx=0.5,fy=0.5,interpolation=cv2.INTER_LINEAR) cv2.imshow("YOLOv8 Detection", res) cv2.waitKey(0)
执行上述代码后,会将执行的结果直接标注在图片上,结果如下:
以上便是关于此款野外火焰烟雾检测系统
的原理与代码介绍。基于此模型,博主用python
与Pyqt5
开发了一个带界面的软件系统,即文中第二部分的演示内容,能够很好的支持图片、视频及摄像头进行检测,同时支持检测结果的保存
。
关于该系统涉及到的完整源码、UI界面代码、数据集、训练代码、测试图片视频等相关文件,均已打包上传,感兴趣的小伙伴可以通过下载链接自行获取。
【获取方式】
本文涉及到的完整全部程序文件:包括python源码、数据集、训练好的结果文件、训练代码、UI源码、测试图片视频等(见下图),获取方式见文末:
注意:该代码基于Python3.9开发,运行界面的主程序为
MainProgram.py
,其他测试脚本说明见上图。为确保程序顺利运行,请按照程序运行说明文档txt
配置软件运行所需环境。