YOLOv8的多分类模型如何计算准确率(Accuracy)、精确率(Precision)、召回率(recall)和F1-Score模型评估参数

简介: YOLOv8的多分类模型如何计算准确率(Accuracy)、精确率(Precision)、召回率(recall)和F1-Score模型评估参数

前言

如下图是YOLOv8训练的多分类结果文件,只给出了混淆矩阵与TOP1与TOP5的准确率曲线。并没有给出最终各个类别的准确率(Accuracy)、精确率(Precision)、召回率(recall)和F1-Score等评估参数。因此我们需要额外计算每个类别的准确率(Accuracy)、精确率(Precision)、召回率(recall)和F1-Score评估参数。以及这些参数平均值本文的计算方式同样可以适用于其他分类模型的评估参数计算。

有了这些参数之后可以更加方便的进行不同分类模型的参数对比,或者模型改进前后的参数对比。

1.安装sklearn库

因为我们参数计算需要使用到机器学习库sklearn,因此我们需要先安装该库,命令如下:

pip install scikit-learn -i https://pypi.tuna.tsinghua.edu.cn/simple

2.计算每个分类的评估参数

我的验证集目录如下,每个类别里面放置的是该类别对应的图片:

详细代码如下,其中real_labels pre_labels 分别代表真实标签与预测标签。

# -*- coding: utf-8 -*-
from ultralytics import YOLO
import matplotlib
import os
matplotlib.use('TkAgg')
from sklearn.metrics import accuracy_score, precision_score,f1_score,recall_score
from sklearn.metrics import classification_report
# 验证结果
model = YOLO('runs/classify/train/weights/best.pt')
# 模型标签
names = {0: 'Bacterial Blight', 1: 'Brown Streak Disease', 2: 'Green Mottle', 3: 'Healthy', 4: 'Mosaic Disease'}
# 验证集路径
base_path = 'datasets/Data/val'
# 将names的key与value值互换,存入dict_names中
dict_names = {v: k for k, v in names.items()}
# 存储真实标签
real_labels = []
# 存储预测标签
pre_labels = []
# 遍历base_path下的所有文件夹,每个文件夹是一个分类
for i in os.listdir(base_path):
    label = dict_names[i]
    # 获取base_path下的所有文件夹下的所有图片
    for j in os.listdir(os.path.join(base_path, i)):
        # 获取图片的路径
        img_path = os.path.join(base_path, i, j)
        # 检测图片
        res = model.predict(img_path)[0]
        # 图片真实标签
        real_labels.append(label)
        # 图片预测标签
        pre_labels.append(res.probs.top1)
print("每个类别的精确率、召回率和F1-Score:")
print(classification_report(real_labels, pre_labels, target_names=list(names.values())))

运行上述代码后,打印结果如下:

分别计算出了每个类别的准确率(Accuracy)、精确率(Precision)、召回率(recall)和F1-Score参数,并且给出了平均参数,就是macro avg那一行。

3. 单个平均参数计算

上面已经给出了所有的评估结果,如果我们只想单独计算的平均的准确率、精确率、F1分数和召回率,代码如下:

# 计算并打印一系列评估指标,包括准确率、精确率、F1分数和召回率
# 参数:
# real_labels: 真实标签列表,表示样本的真实类别
# pre_labels: 预测标签列表,表示模型预测的样本类别
print('单独计算的准确率、精确率、F1分数和召回率:')
# 1. accuracy_score: 准确率,表示预测正确的样本占总样本的比例
print('accuracy_score:',accuracy_score(real_labels, pre_labels))
# 2. precision_score: 精确率,表示预测为正类且实际为正类的样本占预测为正类样本的比例
print('precision_score:',precision_score(real_labels, pre_labels, average='macro'))
# 3. f1_score: F1分数,是精确率和召回率的调和平均值,综合评估精确度和召回率
print('f1_score:',f1_score(real_labels, pre_labels, average='macro'))
# 4. recall_score: 召回率,表示预测为正类且实际为正类的样本占实际正类样本的比例
print('recall_score:',recall_score(real_labels, pre_labels, average='macro'))

运行上述代码后,打印结果如下:

计算出这些模型评估结果之后可以更加方便的进行不同分类模型的性能对比,或者模型改进前后的性能对比


相关文章
|
7月前
|
机器学习/深度学习 计算机视觉
秒懂Precision精确率、Recall召回率-附代码和案例
秒懂Precision精确率、Recall召回率-附代码和案例
|
机器学习/深度学习 算法 搜索推荐
精确率(Precision)和召回率(Recall)
精确率(Precision)和召回率(Recall)是用于评估分类模型性能的指标。它们通常用于二分类问题,例如判断一个样本是正例(Positive)还是负例(Negative)。
6542 0
sklearn中分类模型评估指标(一):准确率、Top准确率、平衡准确率
accuracy_score函数计算准确率分数,即预测正确的分数(默认)或计数(当normalize=False时)。 在多标签分类中,该函数返回子集准确率(subset accuracy)。 如果样本的整个预测标签集与真实标签集严格匹配,则子集准确率为 1.0; 否则为 0.0。
|
5月前
|
机器学习/深度学习 Serverless Python
`sklearn.metrics`是scikit-learn库中用于评估机器学习模型性能的模块。它提供了多种评估指标,如准确率、精确率、召回率、F1分数、混淆矩阵等。这些指标可以帮助我们了解模型的性能,以便进行模型选择和调优。
`sklearn.metrics`是scikit-learn库中用于评估机器学习模型性能的模块。它提供了多种评估指标,如准确率、精确率、召回率、F1分数、混淆矩阵等。这些指标可以帮助我们了解模型的性能,以便进行模型选择和调优。
YOLOv3的NMS参数调整对模型的准确率和召回率分别有什么影响?
YOLOv3的NMS参数调整对模型的准确率和召回率分别有什么影响?
|
7月前
|
算法 数据可视化 PyTorch
YOLOv5性能评估指标->mAP、Precision、Recall、FPS、Confienc (讲解论文关注的主要指标)
YOLOv5性能评估指标->mAP、Precision、Recall、FPS、Confienc (讲解论文关注的主要指标)
2116 0
|
分布式计算 搜索推荐 数据库
准确率(Accuracy) 精确率(Precision) 召回率(Recall)和F1-Measure(精确率和召回率的调和平均值)
准确率(Accuracy) 精确率(Precision) 召回率(Recall)和F1-Measure(精确率和召回率的调和平均值) Spark 构建分类模型
1831 0
准确率(Accuracy) 精确率(Precision) 召回率(Recall)和F1-Measure(精确率和召回率的调和平均值)
|
机器学习/深度学习 运维 搜索推荐
机器学习中准确率、精确率、召回率、误报率、漏报率、F1-Score、AP&mAP、AUC、MAE、MAPE、MSE、RMSE、R-Squared等指标的定义和说明
在机器学习和深度学习用于异常检测(Anomaly detection)、电子商务(E-commerce)、信息检索(Information retrieval, IR)等领域任务(Task)中,有很多的指标来判断机器学习和深度学习效果的好坏。这些指标有相互权衡的,有相互背向的,所以往往需要根据实际的任务和场景来选择衡量指标。本篇博文对这些指标进行一个梳理。
机器学习中准确率、精确率、召回率、误报率、漏报率、F1-Score、AP&mAP、AUC、MAE、MAPE、MSE、RMSE、R-Squared等指标的定义和说明
|
数据可视化
探索不同学习率对训练精度和Loss的影响
探索不同学习率对训练精度和Loss的影响
294 0
|
机器学习/深度学习
瞎聊机器学习——准确率、精确率、召回率、F1 score
瞎聊机器学习——准确率、精确率、召回率、F1 score