基于深度学习的乳腺癌智能检测分割与诊断系统【python源码+Pyqt5界面+数据集+训练代码】深度学习实战、目标分割、人工智能(1)

简介: 基于深度学习的乳腺癌智能检测分割与诊断系统【python源码+Pyqt5界面+数据集+训练代码】深度学习实战、目标分割、人工智能

前言

乳腺癌是女性中最常见的癌症之一,其诊断与治疗成效在很大程度上依赖于肿瘤的早期发现和准确分类。然而,传统的诊断方法需要高度依赖医生的经验和专业知识,这一过程可能存在耗时久、误诊率高等问题。乳腺癌智能检测分割与诊断系统的引入,通过精确的图像分析技术,可以大大提高肿瘤检测的速度和准确性,这对于提升乳腺癌患者的治疗效果和生存率具有至关重要的意义

乳腺癌智能检测分割与诊断系统的应用场景包括

医院日常诊断:辅助放射科医生快速检测和诊断乳腺病变,提升日常诊疗效率。

远程医疗服务:对于偏远地区的患者,可通过远程传输超声图像,让专家在异地进行分析和诊断。

乳腺癌筛查项目:在大规模的乳腺癌筛查计划中,自动识别和分割肿瘤,提高筛查的覆盖率和精确度。

医学研究:为研究人员提供精确的乳腺肿瘤图像资料,推动乳腺癌机理和治疗方法的研究。

医生培训与教育:作为医学生和专业医生的教育工具,帮助他们更好地理解肿瘤的形态特征。

总结来说,乳腺癌智能检测分割与诊断系统对于医疗辅助具有重要作用。它不仅能提高乳腺癌的早期发现率和诊断准确性,还能帮助医疗机构优化资源配置,降低运营成本,最终提升整个医疗行业的服务水平。随着医疗技术的不断发展,这类系统未来将在乳腺癌治疗领域扮演更加重要的角色,大幅提高患者的生存率和生活质量。

博主通过搜集乳腺癌肿瘤的相关超声图片,根据YOLOv8的目标分割技术,基于python与Pyqt5开发了一款界面简洁的乳腺癌智能检测分割与诊断系统,可支持图片、视频以及摄像头检测,同时可以将图片、视频以及摄像头的检测结果进行保存本文详细的介绍了此系统的核心功能以及所使用到的技术原理与制作流程。

软件初始界面如下图所示:

检测结果界面如下:

检测结果说明:

诊断结果区域:分别用'绿色'、‘黄色’、‘红色’背景代表‘正常’、‘良性’、‘恶性’这3种类别的检测结果

显示效果如下:

一、软件核心功能介绍及效果演示

软件主要功能

1. 可进行乳腺癌肿瘤的检测与分割,并判断肿瘤类型:['良性', '恶性'],在诊断结果区域显示['正常'、'良性', '恶性']这3种诊断结果;
2. 支持图片、图片批量、视频及摄像头进行检测分割;
3. 可显示总分割面积占比以及单个目标的分割面积占比
4. 界面可实时显示目标位置分割结果分割面积占比置信度用时等信息;
5. 结果保存:支持图片视频摄像头分割结果保存

界面参数设置说明

  1. 置信度阈值:也就是目标检测时的conf参数,只有检测出的目标置信度大于该值,结果才会显示;
  2. 交并比阈值:也就是目标检测时的iou参数,只有目标检测框的交并比大于该值,结果才会显示;
  3. 窗口1:显示分割结果:表示是否在检测图片中显示分割结果,默认勾选;
  4. 窗口1:显示检测框与标签:表示是否在检测图片中显示检测框与标签,默认勾选;
  5. 窗口2:显示Mask或者显示原始分割图片:表示在窗口2中显示分割的Mask或者原始图片分割内容

IoU:全称为Intersection over

Union,表示交并比。在目标检测中,它用于衡量模型生成的候选框与原标记框之间的重叠程度。IoU值越大,表示两个框之间的相似性越高。通常,当IoU值大于0.5时,认为可以检测到目标物体。这个指标常用于评估模型在特定数据集上的检测准确度。

显示Mask或者显示原始分割图片选项的功能效果如下:

(1)图片检测演示

1.点击打开图片按钮,选择需要检测的图片,或者点击打开文件夹按钮,选择需要批量检测图片所在的文件夹,操作演示如下:

2.点击目标下拉框后,可以选定指定目标的结果信息进行显示。
3.
点击保存按钮,会对图片检测结果进行保存,存储路径为:save_data目录下。

4.点击表格中的指定行,界面会显示该行表格所写的信息内容。

注:右侧目标位置默认显示置信度最大一个目标位置,可用下拉框进行信息切换。所有检测结果均在表格中显示。

单个图片检测操作如下:

批量图片检测操作如下:

点击保存按钮,会对图片的检测结果进行保存,共会保存3种类型结果,分别是:检测分割结果标识图片、分割的Mask图片以及原图分割后的图片。存储在save_data目录下,保存结果如下:

(2)视频检测演示

1.点击打开视频图标,打开选择需要检测的视频,就会自动显示检测结果。再次点击该按钮,会关闭视频

2.点击保存按钮,会对视频检测结果进行保存,同样会保存3种类型结果,分别是:检测分割结果标识视频、分割Mask视频以及原视频分割后的视频,存储路径为:save_data目录下。

视频检测演示:

视频保存演示:

视频检测保存结果如下:

(3)摄像头检测演示

1.点击打开摄像头按钮,可以打开摄像头,可以实时进行检测,再次点击该按钮,可关闭摄像头

2.点击保存按钮,可以进行摄像头实时图像的检测结果保存

摄像头检测演示:

摄像头保存演示:

摄像头检测保存结果如下:

(4)检测结果保存

点击保存按钮后,会将当前选择的图片【含批量图片】、视频或者摄像头的分割结果进行保存。结果会存储在save_data目录下,保存内容如下:

基于深度学习的乳腺癌智能检测分割与诊断系统【python源码+Pyqt5界面+数据集+训练代码】深度学习实战、目标分割、人工智能(2)https://developer.aliyun.com/article/1536857

目录
打赏
0
0
0
0
126
分享
相关文章
【Azure Developer】分享两段Python代码处理表格(CSV格式)数据 : 根据每列的内容生成SQL语句
本文介绍了使用Python Pandas处理数据收集任务中格式不统一的问题。针对两种情况:服务名对应多人拥有状态(1/0表示),以及服务名与人名重复列的情况,分别采用双层for循环和字典数据结构实现数据转换,最终生成Name对应的Services列表(逗号分隔)。此方法高效解决大量数据的人工处理难题,减少错误并提升效率。文中附带代码示例及执行结果截图,便于理解和实践。
实战指南:通过1688开放平台API获取商品详情数据(附Python代码及避坑指南)
1688作为国内最大的B2B供应链平台,其API为企业提供合法合规的JSON数据源,直接获取批发价、SKU库存等核心数据。相比爬虫方案,官方API避免了反爬严格、数据缺失和法律风险等问题。企业接入1688商品API需完成资质认证、创建应用、签名机制解析及调用接口四步。应用场景包括智能采购系统、供应商评估模型和跨境选品分析。提供高频问题解决方案及安全合规实践,确保数据安全与合法使用。立即访问1688开放平台,解锁B2B数据宝藏!
【Azure Developer】编写Python SDK代码实现从China Azure中VM Disk中创建磁盘快照Snapshot
本文介绍如何使用Python SDK为中国区微软云(China Azure)中的虚拟机磁盘创建快照。通过Azure Python SDK的Snapshot Class,指定`location`和`creation_data`参数,使用`Copy`选项从现有磁盘创建快照。代码示例展示了如何配置Default Azure Credential,并设置特定于中国区Azure的`base_url`和`credential_scopes`。参考资料包括官方文档和相关API说明。
深度学习在安全事件检测中的应用:守护数字世界的利器
深度学习在安全事件检测中的应用:守护数字世界的利器
114 22
深度学习在故障检测中的应用:从理论到实践
深度学习在故障检测中的应用:从理论到实践
273 6
深度学习在流量监控中的革命性应用
深度学习在流量监控中的革命性应用
90 40
深度学习在资源利用率优化中的应用:让服务器更聪明
深度学习在资源利用率优化中的应用:让服务器更聪明
117 6
深入探索:深度学习在时间序列预测中的强大应用与实现
时间序列分析是数据科学和机器学习中一个重要的研究领域,广泛应用于金融市场、天气预报、能源管理、交通预测、健康监控等多个领域。时间序列数据具有顺序相关性,通常展示出时间上较强的依赖性,因此简单的传统回归模型往往不能捕捉其中复杂的动态特征。深度学习通过其非线性建模能力和层次结构的特征提取能力,能够有效地捕捉复杂的时间相关性和非线性动态变化模式,从而在时间序列分析中展现出极大的潜力。
深度学习在图像识别中的应用与挑战
【10月更文挑战第21天】 本文探讨了深度学习技术在图像识别领域的应用,并分析了当前面临的主要挑战。通过研究卷积神经网络(CNN)的结构和原理,本文展示了深度学习如何提高图像识别的准确性和效率。同时,本文也讨论了数据不平衡、过拟合、计算资源限制等问题,并提出了相应的解决策略。
150 19

热门文章

最新文章