基于深度学习的乳腺癌智能检测分割与诊断系统【python源码+Pyqt5界面+数据集+训练代码】深度学习实战、目标分割、人工智能(1)

简介: 基于深度学习的乳腺癌智能检测分割与诊断系统【python源码+Pyqt5界面+数据集+训练代码】深度学习实战、目标分割、人工智能

前言

乳腺癌是女性中最常见的癌症之一,其诊断与治疗成效在很大程度上依赖于肿瘤的早期发现和准确分类。然而,传统的诊断方法需要高度依赖医生的经验和专业知识,这一过程可能存在耗时久、误诊率高等问题。乳腺癌智能检测分割与诊断系统的引入,通过精确的图像分析技术,可以大大提高肿瘤检测的速度和准确性,这对于提升乳腺癌患者的治疗效果和生存率具有至关重要的意义

乳腺癌智能检测分割与诊断系统的应用场景包括

医院日常诊断:辅助放射科医生快速检测和诊断乳腺病变,提升日常诊疗效率。

远程医疗服务:对于偏远地区的患者,可通过远程传输超声图像,让专家在异地进行分析和诊断。

乳腺癌筛查项目:在大规模的乳腺癌筛查计划中,自动识别和分割肿瘤,提高筛查的覆盖率和精确度。

医学研究:为研究人员提供精确的乳腺肿瘤图像资料,推动乳腺癌机理和治疗方法的研究。

医生培训与教育:作为医学生和专业医生的教育工具,帮助他们更好地理解肿瘤的形态特征。

总结来说,乳腺癌智能检测分割与诊断系统对于医疗辅助具有重要作用。它不仅能提高乳腺癌的早期发现率和诊断准确性,还能帮助医疗机构优化资源配置,降低运营成本,最终提升整个医疗行业的服务水平。随着医疗技术的不断发展,这类系统未来将在乳腺癌治疗领域扮演更加重要的角色,大幅提高患者的生存率和生活质量。

博主通过搜集乳腺癌肿瘤的相关超声图片,根据YOLOv8的目标分割技术,基于python与Pyqt5开发了一款界面简洁的乳腺癌智能检测分割与诊断系统,可支持图片、视频以及摄像头检测,同时可以将图片、视频以及摄像头的检测结果进行保存本文详细的介绍了此系统的核心功能以及所使用到的技术原理与制作流程。

软件初始界面如下图所示:

检测结果界面如下:

检测结果说明:

诊断结果区域:分别用'绿色'、‘黄色’、‘红色’背景代表‘正常’、‘良性’、‘恶性’这3种类别的检测结果

显示效果如下:

一、软件核心功能介绍及效果演示

软件主要功能

1. 可进行乳腺癌肿瘤的检测与分割,并判断肿瘤类型:['良性', '恶性'],在诊断结果区域显示['正常'、'良性', '恶性']这3种诊断结果;
2. 支持图片、图片批量、视频及摄像头进行检测分割;
3. 可显示总分割面积占比以及单个目标的分割面积占比
4. 界面可实时显示目标位置分割结果分割面积占比置信度用时等信息;
5. 结果保存:支持图片视频摄像头分割结果保存

界面参数设置说明

  1. 置信度阈值:也就是目标检测时的conf参数,只有检测出的目标置信度大于该值,结果才会显示;
  2. 交并比阈值:也就是目标检测时的iou参数,只有目标检测框的交并比大于该值,结果才会显示;
  3. 窗口1:显示分割结果:表示是否在检测图片中显示分割结果,默认勾选;
  4. 窗口1:显示检测框与标签:表示是否在检测图片中显示检测框与标签,默认勾选;
  5. 窗口2:显示Mask或者显示原始分割图片:表示在窗口2中显示分割的Mask或者原始图片分割内容

IoU:全称为Intersection over

Union,表示交并比。在目标检测中,它用于衡量模型生成的候选框与原标记框之间的重叠程度。IoU值越大,表示两个框之间的相似性越高。通常,当IoU值大于0.5时,认为可以检测到目标物体。这个指标常用于评估模型在特定数据集上的检测准确度。

显示Mask或者显示原始分割图片选项的功能效果如下:

(1)图片检测演示

1.点击打开图片按钮,选择需要检测的图片,或者点击打开文件夹按钮,选择需要批量检测图片所在的文件夹,操作演示如下:

2.点击目标下拉框后,可以选定指定目标的结果信息进行显示。
3.
点击保存按钮,会对图片检测结果进行保存,存储路径为:save_data目录下。

4.点击表格中的指定行,界面会显示该行表格所写的信息内容。

注:右侧目标位置默认显示置信度最大一个目标位置,可用下拉框进行信息切换。所有检测结果均在表格中显示。

单个图片检测操作如下:

批量图片检测操作如下:

点击保存按钮,会对图片的检测结果进行保存,共会保存3种类型结果,分别是:检测分割结果标识图片、分割的Mask图片以及原图分割后的图片。存储在save_data目录下,保存结果如下:

(2)视频检测演示

1.点击打开视频图标,打开选择需要检测的视频,就会自动显示检测结果。再次点击该按钮,会关闭视频

2.点击保存按钮,会对视频检测结果进行保存,同样会保存3种类型结果,分别是:检测分割结果标识视频、分割Mask视频以及原视频分割后的视频,存储路径为:save_data目录下。

视频检测演示:

视频保存演示:

视频检测保存结果如下:

(3)摄像头检测演示

1.点击打开摄像头按钮,可以打开摄像头,可以实时进行检测,再次点击该按钮,可关闭摄像头

2.点击保存按钮,可以进行摄像头实时图像的检测结果保存

摄像头检测演示:

摄像头保存演示:

摄像头检测保存结果如下:

(4)检测结果保存

点击保存按钮后,会将当前选择的图片【含批量图片】、视频或者摄像头的分割结果进行保存。结果会存储在save_data目录下,保存内容如下:

基于深度学习的乳腺癌智能检测分割与诊断系统【python源码+Pyqt5界面+数据集+训练代码】深度学习实战、目标分割、人工智能(2)https://developer.aliyun.com/article/1536857

目录
打赏
0
0
0
0
134
分享
相关文章
Python 实战:用 API 接口批量抓取小红书笔记评论,解锁数据采集新姿势
小红书作为社交电商的重要平台,其笔记评论蕴含丰富市场洞察与用户反馈。本文介绍的小红书笔记评论API,可获取指定笔记的评论详情(如内容、点赞数等),支持分页与身份认证。开发者可通过HTTP请求提取数据,以JSON格式返回。附Python调用示例代码,帮助快速上手分析用户互动数据,优化品牌策略与用户体验。
Python 实战!利用 API 接口获取小红书笔记详情的完整攻略
小红书笔记详情API接口帮助商家和数据分析人员获取笔记的详细信息,如标题、内容、作者信息、点赞数等,支持市场趋势与用户反馈分析。接口通过HTTP GET/POST方式请求,需提供`note_id`和`access_token`参数,返回JSON格式数据。以下是Python示例代码,展示如何调用该接口获取数据。使用时请遵守平台规范与法律法规。
计算机视觉五大技术——深度学习在图像处理中的应用
深度学习利用多层神经网络实现人工智能,计算机视觉是其重要应用之一。图像分类通过卷积神经网络(CNN)判断图片类别,如“猫”或“狗”。目标检测不仅识别物体,还确定其位置,R-CNN系列模型逐步优化检测速度与精度。语义分割对图像每个像素分类,FCN开创像素级分类范式,DeepLab等进一步提升细节表现。实例分割结合目标检测与语义分割,Mask R-CNN实现精准实例区分。关键点检测用于人体姿态估计、人脸特征识别等,OpenPose和HRNet等技术推动该领域发展。这些方法在效率与准确性上不断进步,广泛应用于实际场景。
283 64
计算机视觉五大技术——深度学习在图像处理中的应用
深度学习在安全事件检测中的应用:守护数字世界的利器
深度学习在安全事件检测中的应用:守护数字世界的利器
170 22
深度学习在故障检测中的应用:从理论到实践
深度学习在故障检测中的应用:从理论到实践
349 6
深度学习在DOM解析中的应用:自动识别页面关键内容区块
本文探讨了如何通过深度学习模型优化东方财富吧财经新闻爬虫的性能。针对网络请求、DOM解析与模型推理等瓶颈,采用代理复用、批量推理、多线程并发及模型量化等策略,将单页耗时从5秒优化至2秒,提升60%以上。代码示例涵盖代理配置、TFLite模型加载、批量预测及多线程抓取,确保高效稳定运行,为大规模数据采集提供参考。
深度学习在流量监控中的革命性应用
深度学习在流量监控中的革命性应用
111 40
深度学习在资源利用率优化中的应用:让服务器更聪明
深度学习在资源利用率优化中的应用:让服务器更聪明
159 6
深入探索:深度学习在时间序列预测中的强大应用与实现
时间序列分析是数据科学和机器学习中一个重要的研究领域,广泛应用于金融市场、天气预报、能源管理、交通预测、健康监控等多个领域。时间序列数据具有顺序相关性,通常展示出时间上较强的依赖性,因此简单的传统回归模型往往不能捕捉其中复杂的动态特征。深度学习通过其非线性建模能力和层次结构的特征提取能力,能够有效地捕捉复杂的时间相关性和非线性动态变化模式,从而在时间序列分析中展现出极大的潜力。
AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等