【手把手教学】如何可视化YOLOv8深度学习的网络结构并保存

简介: 【手把手教学】如何可视化YOLOv8深度学习的网络结构并保存

前言

最近,有很多小伙伴问我如何查看自己训练好的网络模型结构和详细信息,那我在这篇文章将详细介绍如何将YOLOv8网络结构可视化,并且查看详细信息,希望能给大家带来帮助。对于其他深度学习网络模型,也同样可以通过类似的方式使用Netron进行查看。

1.将.pt模型转为.onnx模型

首先,我们需要加载自己训练好的yolov8网络模型best.pt文件。然后,使用model.expert方法将其转为.onnx格式的模型文件。代码如下:

from ultralytics import YOLO
# 加载训练好的模型
model = YOLO("runs/train/weights/best.pt")
# 将模型转为onnx格式
success = model.export(format='onnx')

运行上述代码后,就会在best.pt文件所在的目录下生成同名的.onnx格式文件,如下图:

2. 使用Netron可视化网络结构

2.1 Netron简介

Netron 是一个开源的模型可视化工具,用于可视化深度学习模型的结构和参数。它可以加载和显示多种框架和模型格式,包括ONNX(Open Neural Network Exchange)、TensorFlow、Keras、Caffe、Core ML 等。通过图形界面,用户可以直观地查看模型的网络结构、层级关系、参数等信息。

Netron 的主要特点包括:

  1. 多框架和多格式支持:Netron 支持常见的深度学习框架和模型格式,包括ONNX、TensorFlow、Keras、Caffe、CoreML 等,因此可以加载和可视化多种类型的深度学习模型。
  2. 直观的可视化界面:Netron提供一个直观的图形界面,以树状结构展示模型的网络层次和参数。用户可以浏览模型的结构、查看各层的输入输出尺寸、参数数量等,帮助理解模型的组成和特性。
  3. 跨平台支持:Netron 可以运行在多种操作系统上,包括 Windows、macOS 和 Linux,方便用户在不同环境中使用。
  4. 快速加载和渲染:Netron 的设计优化了模型的加载和渲染过程,使得大型模型的可视化也能够在短时间内完成。
    Netron 是一个简单但功能强大的模型可视化工具,对于深度学习开发者和研究人员来说,它可以提供有价值的模型分析和理解工具,帮助他们更好地理解和调试深度学习模型。

2.2 网络结构可视化

我们打开Netron地址: https://netron.app,打开后界面如下:

点击箭头处,选择我们转换好的best.onnx文件,然后点击打开:

打开后显示结果如下,界面会显示模型的整个网络结构,如下所示:

点击网络结构中某个节点,会在界面右侧显示出改节点的详细信息,例如卷积核的大小,卷积核的具体参数等。如下图:

同时也提供了将网络结构保存为图片的功能,左侧点击expert可将整个结构保存为.png或者.svg图片。

但是,从显示网络结构中我们可以看到,图中没有显示特征图的维度,只有输入数据的维度(3,640,640)。在netron中,如果想看到特征图的维度,需要在导出为onnx的时候,同时加上特征图维度信息。这个操作需要onnx库的帮助,可以通过pip install onnx进行安装。具体代码如下:

# 增加特征图维度信息
    model_file = 'runs/train/weights/best.onnx'
    # 加载刚转换好的best.onnx文件
    onnx_model = onnx.load(model_file)
    # 重新保存为best2.onnx文件
    onnx.save(onnx.shape_inference.infer_shapes(onnx_model), 'runs/train/weights/best2.onnx')

运行代码后,在best.onnx同目录下会生成一个best2.onnx文件,然后我们重新在https://netron.app打开best2.onnx文件:

这次我们可以看到相比之前显示的内容,多了一个增加维度信息的步骤。此时可视化图中就能完整显示所有特征图的维度了。然后我们将其保存为.png图片,如下所示:

通过上述,操作我们就可以清楚的看到整个网络结构,并且可以查看每个网络节点的详细信息,希望能够帮助到大家。

相关文章
|
11天前
|
机器学习/深度学习 人工智能 算法
猫狗宠物识别系统Python+TensorFlow+人工智能+深度学习+卷积网络算法
宠物识别系统使用Python和TensorFlow搭建卷积神经网络,基于37种常见猫狗数据集训练高精度模型,并保存为h5格式。通过Django框架搭建Web平台,用户上传宠物图片即可识别其名称,提供便捷的宠物识别服务。
143 55
|
21天前
|
机器学习/深度学习 人工智能 算法
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
宠物识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了37种常见的猫狗宠物种类数据集【'阿比西尼亚猫(Abyssinian)', '孟加拉猫(Bengal)', '暹罗猫(Birman)', '孟买猫(Bombay)', '英国短毛猫(British Shorthair)', '埃及猫(Egyptian Mau)', '缅因猫(Maine Coon)', '波斯猫(Persian)', '布偶猫(Ragdoll)', '俄罗斯蓝猫(Russian Blue)', '暹罗猫(Siamese)', '斯芬克斯猫(Sphynx)', '美国斗牛犬
112 29
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
|
8天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于yolov4深度学习网络的公共场所人流密度检测系统matlab仿真,带GUI界面
本项目使用 MATLAB 2022a 进行 YOLOv4 算法仿真,实现公共场所人流密度检测。通过卷积神经网络提取图像特征,将图像划分为多个网格进行目标检测和识别,最终计算人流密度。核心程序包括图像和视频读取、处理和显示功能。仿真结果展示了算法的有效性和准确性。
53 31
|
14天前
|
机器学习/深度学习 算法 信息无障碍
基于GoogleNet深度学习网络的手语识别算法matlab仿真
本项目展示了基于GoogleNet的深度学习手语识别算法,使用Matlab2022a实现。通过卷积神经网络(CNN)识别手语手势,如"How are you"、"I am fine"、"I love you"等。核心在于Inception模块,通过多尺度处理和1x1卷积减少计算量,提高效率。项目附带完整代码及操作视频。
|
17天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于深度学习网络的宝石类型识别算法matlab仿真
本项目利用GoogLeNet深度学习网络进行宝石类型识别,实验包括收集多类宝石图像数据集并按7:1:2比例划分。使用Matlab2022a实现算法,提供含中文注释的完整代码及操作视频。GoogLeNet通过其独特的Inception模块,结合数据增强、学习率调整和正则化等优化手段,有效提升了宝石识别的准确性和效率。
|
20天前
|
机器学习/深度学习 人工智能 自然语言处理
深入理解深度学习中的卷积神经网络(CNN)##
在当今的人工智能领域,深度学习已成为推动技术革新的核心力量之一。其中,卷积神经网络(CNN)作为深度学习的一个重要分支,因其在图像和视频处理方面的卓越性能而备受关注。本文旨在深入探讨CNN的基本原理、结构及其在实际应用中的表现,为读者提供一个全面了解CNN的窗口。 ##
|
21天前
|
机器学习/深度学习 人工智能 算法
深度学习入门:用Python构建你的第一个神经网络
在人工智能的海洋中,深度学习是那艘能够带你远航的船。本文将作为你的航标,引导你搭建第一个神经网络模型,让你领略深度学习的魅力。通过简单直观的语言和实例,我们将一起探索隐藏在数据背后的模式,体验从零开始创造智能系统的快感。准备好了吗?让我们启航吧!
54 3
|
29天前
|
机器学习/深度学习 自然语言处理 语音技术
Python在深度学习领域的应用,重点讲解了神经网络的基础概念、基本结构、训练过程及优化技巧
本文介绍了Python在深度学习领域的应用,重点讲解了神经网络的基础概念、基本结构、训练过程及优化技巧,并通过TensorFlow和PyTorch等库展示了实现神经网络的具体示例,涵盖图像识别、语音识别等多个应用场景。
52 8
|
27天前
|
机器学习/深度学习 自然语言处理 算法
深入理解深度学习中的卷积神经网络(CNN)
深入理解深度学习中的卷积神经网络(CNN)
36 1
|
27天前
|
机器学习/深度学习 人工智能 自然语言处理
深入理解深度学习中的卷积神经网络(CNN)
深入理解深度学习中的卷积神经网络(CNN)

热门文章

最新文章