【YOLO性能对比试验】YOLOv9c/v8n/v6n/v5n的训练结果对比及结论参考

简介: 【YOLO性能对比试验】YOLOv9c/v8n/v6n/v5n的训练结果对比及结论参考

本文主要是针对YOLOv9c/v8n/v6n/v5n这4种模型,在自己的某烟雾目标检测数据集上进行了训练对比实验,并得出了一些参考性的结论,供小伙伴们参考学习。如果有什么问题,欢迎一起学习交流。

注:本文训练结果得出的试验结论仅供参考,并不能一概而论,不同数据集的训练结果也可能会不一样。

1.引言

YOLOv9 的核心创新在于解决深度神经网络中信息丢失所带来的挑战。在追求最佳实时物体检测的过程中,YOLOv9 以其创新的方法克服了深度神经网络固有的信息丢失难题,脱颖而出。通过整合 PGI 和多功能 GELAN 架构,YOLOv9 不仅增强了模型的学习能力,还确保了在整个检测过程中保留关键信息,从而实现了卓越的准确性和性能。

性能对比

官方给出的不同YOLO版本在COCO数据集上的性能对比如下。从图中可以看出从性能上讲,YOLOv9对比于其他版本,在性能上还是有很大提升的。

2.YOLOv9的主要亮点

YOLOv9 引入了可编程梯度信息 (PGI) 广义高效层聚合网络 (GELAN) 等开创性技术,标志着实时目标检测领域的重大进步。该模型在效率、准确性和适应性方面都有显著提高,在 MS COCO 数据集上树立了新的标杆。

可编程梯度信息 (PGI)

PGI 是 YOLOv9 为解决信息瓶颈问题而引入的一个新概念,可确保在深层网络中保留重要数据。这样就可以生成可靠的梯度,促进模型的准确更新,提高整体检测性能。

通用高效层聚合网络(GELAN)

GELAN 是一项战略性的架构进步,使 YOLOv9 能够实现更高的参数利用率和计算效率。它的设计允许灵活集成各种计算模块,使 YOLOv9 能够适应广泛的应用,而不会牺牲速度或精度。

3. 本文不同YOLO版本对比试验

本文主要是针对YOLOv9c/v8n/v6n/v5n这4种模型,在自己的某烟雾目标检测数据集上进行了训练对比实验。训练轮数150个epoch。

各模型参数量如下:

Model Test Size(像素) Param(M) FLOPs(B)
yolov5nu 640 2.6 7.7
yolov6n 640 4.7 11.4
yolov8n 640 3.2 8.7
yolov9-c 640 25.3 102.1

训练过程的损失曲线对比如下:

训练过程中的精确度(Precision)、召回率(Recall)、平均精确度(Mean Average Precision, mAP)等参数的对比如下:

最终精度结果对比:

名称 YOLOv5n YOLOv6n YOLOv8n YOLOv9c
mAP@0.5 0.944 0.845 0.953 0.946
F1-Score 0.91 0.81 0.91 0.91

4. 结论

针对此目标检测数据集,从上述的模型训练试验结果可以看出:

1.从模型训练过程损失曲线上看,模型训练收敛速度YOLOv5n/v8n > YOLOv9c >YOLOv6n。YOLOv5n与YOLOv8n这两个模型训练的收敛速度基本相同。YOLOv6n收敛速度较慢

2.从训练结果的性能精度上看,YOLOv8n得到的结果最优,YOLOv8n > YOLOv9c > YOLOv5n > YOLOv6n。但YOLOv8n 、YOLOv9c、YOLOv5n这3个模型的训练结果相差不是很多,差距在1%以内。但YOLOv8n 、YOLOv9c、YOLOv5n明显优于YOLOv6n的训练结果,均比YOLOv6n的精度约提高了10%。

注:本文训练结果得出的试验结论仅供参考,并不能一概而论,不同数据集的训练结果可能也会不一样。

后续,还会出一些关于模型对比、模型改进对比等相关实验结果,供大家参考。

相关文章
|
3天前
|
人工智能 自然语言处理 Shell
深度评测 | 仅用3分钟,百炼调用满血版 Deepseek-r1 API,百万Token免费用,简直不要太爽。
仅用3分钟,百炼调用满血版Deepseek-r1 API,享受百万免费Token。阿里云提供零门槛、快速部署的解决方案,支持云控制台和Cloud Shell两种方式,操作简便。Deepseek-r1满血版在推理能力上表现出色,尤其擅长数学、代码和自然语言处理任务,使用过程中无卡顿,体验丝滑。结合Chatbox工具,用户可轻松掌控模型,提升工作效率。阿里云大模型服务平台百炼不仅速度快,还确保数据安全,值得信赖。
129300 24
深度评测 | 仅用3分钟,百炼调用满血版 Deepseek-r1 API,百万Token免费用,简直不要太爽。
|
5天前
|
人工智能 API 网络安全
用DeepSeek,就在阿里云!四种方式助您快速使用 DeepSeek-R1 满血版!更有内部实战指导!
DeepSeek自发布以来,凭借卓越的技术性能和开源策略迅速吸引了全球关注。DeepSeek-R1作为系列中的佼佼者,在多个基准测试中超越现有顶尖模型,展现了强大的推理能力。然而,由于其爆火及受到黑客攻击,官网使用受限,影响用户体验。为解决这一问题,阿里云提供了多种解决方案。
16156 37
|
13天前
|
机器学习/深度学习 人工智能 自然语言处理
PAI Model Gallery 支持云上一键部署 DeepSeek-V3、DeepSeek-R1 系列模型
DeepSeek 系列模型以其卓越性能在全球范围内备受瞩目,多次评测中表现优异,性能接近甚至超越国际顶尖闭源模型(如OpenAI的GPT-4、Claude-3.5-Sonnet等)。企业用户和开发者可使用 PAI 平台一键部署 DeepSeek 系列模型,实现 DeepSeek 系列模型与现有业务的高效融合。
|
4天前
|
并行计算 PyTorch 算法框架/工具
本地部署DeepSeek模型
要在本地部署DeepSeek模型,需准备Linux(推荐Ubuntu 20.04+)或兼容的Windows/macOS环境,配备NVIDIA GPU(建议RTX 3060+)。安装Python 3.8+、PyTorch/TensorFlow等依赖,并通过官方渠道下载模型文件。配置模型后,编写推理脚本进行测试,可选使用FastAPI服务化部署或Docker容器化。注意资源监控和许可协议。
1179 8
|
13天前
|
人工智能 搜索推荐 Docker
手把手教你使用 Ollama 和 LobeChat 快速本地部署 DeepSeek R1 模型,创建个性化 AI 助手
DeepSeek R1 + LobeChat + Ollama:快速本地部署模型,创建个性化 AI 助手
3338 117
手把手教你使用 Ollama 和 LobeChat 快速本地部署 DeepSeek R1 模型,创建个性化 AI 助手
|
8天前
|
人工智能 自然语言处理 API
DeepSeek全尺寸模型上线阿里云百炼!
阿里云百炼平台近日上线了DeepSeek-V3、DeepSeek-R1及其蒸馏版本等六款全尺寸AI模型,参数量达671B,提供高达100万免费tokens。这些模型在数学、代码、自然语言推理等任务上表现出色,支持灵活调用和经济高效的解决方案,助力开发者和企业加速创新与数字化转型。示例代码展示了如何通过API使用DeepSeek-R1模型进行推理,用户可轻松获取思考过程和最终答案。
|
5天前
|
人工智能 自然语言处理 程序员
如何在通义灵码里用上DeepSeek-V3 和 DeepSeek-R1 满血版671B模型?
除了 AI 程序员的重磅上线外,近期通义灵码能力再升级全新上线模型选择功能,目前已经支持 Qwen2.5、DeepSeek-V3 和 R1系列模型,用户可以在 VSCode 和 JetBrains 里搜索并下载最新通义灵码插件,在输入框里选择模型,即可轻松切换模型。
845 14
|
12天前
|
API 开发工具 Python
阿里云PAI部署DeepSeek及调用
本文介绍如何在阿里云PAI EAS上部署DeepSeek模型,涵盖7B模型的部署、SDK和API调用。7B模型只需一张A10显卡,部署时间约10分钟。文章详细展示了模型信息查看、在线调试及通过OpenAI SDK和Python Requests进行调用的步骤,并附有测试结果和参考文档链接。
1860 9
阿里云PAI部署DeepSeek及调用
|
9天前
|
人工智能 数据可视化 Linux
【保姆级教程】3步搞定DeepSeek本地部署
DeepSeek在2025年春节期间突然爆火出圈。在目前DeepSeek的网站中,极不稳定,总是服务器繁忙,这时候本地部署就可以有效规避问题。本文以最浅显易懂的方式带读者一起完成DeepSeek-r1大模型的本地部署。
|
11天前
|
缓存 自然语言处理 安全
快速调用 Deepseek API!【超详细教程】
Deepseek 强大的功能,在本教程中,将指导您如何获取 DeepSeek API 密钥,并演示如何使用该密钥调用 DeepSeek API 以进行调试。

热门文章

最新文章