基于YOLOv8深度学习的玉米叶片病害智能诊断与防治系统【python源码+Pyqt5界面+数据集+训练代码】深度学习实战、目标分类(2)

简介: 基于YOLOv8深度学习的玉米叶片病害智能诊断与防治系统【python源码+Pyqt5界面+数据集+训练代码】深度学习实战、目标分类

基于YOLOv8深度学习的玉米叶片病害智能诊断与防治系统【python源码+Pyqt5界面+数据集+训练代码】深度学习实战、目标分类(1)https://developer.aliyun.com/article/1536800

二、模型的训练、评估与推理

1.YOLOv8的基本原理

YOLOv8是一种前沿的深度学习技术,它基于先前YOLO版本在目标检测任务上的成功,进一步提升了性能和灵活性,在精度和速度方面都具有尖端性能。在之前YOLO 版本的基础上,YOLOv8 引入了新的功能和优化,使其成为广泛应用中各种物体检测任务的理想选择。主要的创新点包括一个新的骨干网络、一个新的 Ancher-Free 检测头和一个新的损失函数,可以在从 CPU 到 GPU 的各种硬件平台上运行

YOLO各版本性能对比:

其主要网络结构如下:

2. 数据集准备与训练

本文使用的玉米叶片病害数据集共包含3852张图片,分为4个病害类别,分别是['锈病','灰叶斑病','健康','枯叶病']。部分数据集及类别信息如下:

图片数据集的存放格式如下,在项目目录中新建datasets目录,同时将分类的图片分为训练集与验证集放入Data目录下。

3.模型训练

数据准备完成后,通过调用train.py文件进行模型训练,epochs参数用于调整训练的轮数,batch参数用于调整训练的批次大小【根据内存大小调整,最小为1】,代码如下:

#coding:utf-8
from ultralytics import YOLO
import matplotlib
matplotlib.use('TkAgg')
if __name__ == '__main__':
    # 训练模型配置文件路径
    yolo_yaml_path = 'ultralytics/cfg/models/v8/yolov8-cls.yaml'
    # 官方预训练模型路径
    pre_model_path = "yolov8n-cls.pt"
    # 加载预训练模型
    model = YOLO(yolo_yaml_path).load(pre_model_path)
    # 模型训练
    model.train(data='datasets/Data', epochs=150, batch=4)

4. 训练结果评估

在深度学习中,我们通常用损失函数下降的曲线来观察模型训练的情况。YOLOv8在训练结束后,可以在runs/目录下找到训练过程及结果文件,如下所示:

本文训练结果如下:

通过accuracy_top1图片准确率曲线图我们可以发现,该模型在验证集的准确率约为0.99,结果还是很不错的。

5. 利用模型进行推理

模型训练完成后,我们可以得到一个最佳的训练结果模型best.pt文件,在runs/trian/weights目录下。我们可以使用该文件进行后续的推理检测。

图片检测代码如下:

#coding:utf-8
from ultralytics import YOLO
import cv2
# 所需加载的模型目录
path = 'models/best.pt'
# 需要检测的图片地址
img_path = "TestFiles/RS_Rust 1598.JPG"
# 加载模型
model = YOLO(path, task='classify')
# 检测图片
results = model(img_path)
print(results)
res = results[0].plot()
# res = cv2.resize(res,dsize=None,fx=0.3,fy=0.3,interpolation=cv2.INTER_LINEAR)
cv2.imshow("YOLOv8 Detection", res)
cv2.waitKey(0)

执行上述代码后,会将执行的结果直接标注在图片上,结果如下:

以上便是关于此款玉米叶片病害智能诊断与防治系统的原理与代码介绍。基于此模型,博主用pythonPyqt5开发了一个带界面的软件系统,即文中第二部分的演示内容,能够很好的支持图片、批量图片、视频及摄像头进行检测

相关文章
|
3月前
|
数据采集 Python
Python实用记录(七):通过retinaface对CASIA-WebFace人脸数据集进行清洗,并把错误图路径放入txt文档
使用RetinaFace模型对CASIA-WebFace人脸数据集进行清洗,并将无法检测到人脸的图片路径记录到txt文档中。
57 1
|
2月前
|
JSON 开发工具 git
基于Python和pygame的植物大战僵尸游戏设计源码
本项目是基于Python和pygame开发的植物大战僵尸游戏,包含125个文件,如PNG图像、Python源码等,提供丰富的游戏开发学习素材。游戏设计源码可从提供的链接下载。关键词:Python游戏开发、pygame、植物大战僵尸、源码分享。
|
2月前
|
机器学习/深度学习 算法 PyTorch
用Python实现简单机器学习模型:以鸢尾花数据集为例
用Python实现简单机器学习模型:以鸢尾花数据集为例
171 1
|
3月前
|
数据可视化 数据挖掘 大数据
Python 数据分析入门:从零开始处理数据集
Python 数据分析入门:从零开始处理数据集
|
3月前
|
数据可视化 测试技术 Linux
基于Python后端构建多种不同的系统终端界面研究
【10月更文挑战第10天】本研究探讨了利用 Python 后端技术构建多样化系统终端界面的方法,涵盖命令行界面(CLI)、图形用户界面(GUI)及 Web 界面。通过分析各种界面的特点、适用场景及关键技术,展示了如何使用 Python 标准库和第三方库(如 `argparse`、`click`、`Tkinter` 和 `PyQt`)实现高效、灵活的界面设计。旨在提升用户体验并满足不同应用场景的需求。
|
3月前
|
自然语言处理 Java 编译器
为什么要看 Python 源码?它的结构长什么样子?
为什么要看 Python 源码?它的结构长什么样子?
52 2
|
3月前
|
数据采集 前端开发 Python
Python pygame 实现游戏 彩色 五子棋 详细注释 附源码 单机版
Python pygame 实现游戏 彩色 五子棋 详细注释 附源码 单机版
102 0
|
1月前
|
机器学习/深度学习 传感器 数据采集
深度学习在故障检测中的应用:从理论到实践
深度学习在故障检测中的应用:从理论到实践
139 5
|
18天前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习的原理与应用:开启智能时代的大门
深度学习的原理与应用:开启智能时代的大门
117 16
|
28天前
|
机器学习/深度学习 网络架构 计算机视觉
深度学习在图像识别中的应用与挑战
【10月更文挑战第21天】 本文探讨了深度学习技术在图像识别领域的应用,并分析了当前面临的主要挑战。通过研究卷积神经网络(CNN)的结构和原理,本文展示了深度学习如何提高图像识别的准确性和效率。同时,本文也讨论了数据不平衡、过拟合、计算资源限制等问题,并提出了相应的解决策略。
85 19