基于YOLOv8深度学习的智能道路裂缝检测与分析系统【python源码+Pyqt5界面+数据集+训练代码】深度学习实战、目标检测、目标分割(1)

简介: 基于YOLOv8深度学习的智能道路裂缝检测与分析系统【python源码+Pyqt5界面+数据集+训练代码】深度学习实战、目标检测、目标分割

前言

智能道路裂缝检测与分析系统在基础设施维护和安全监测方面起着非常重要的作用。道路裂缝是道路衰老和破坏的早期迹象,若不及时发现和修复,可能会导致道路结构的进一步恶化,甚至引发安全事故。基于YOLOv8的这一系统能够自动化地检测道路裂缝,准确分析裂缝的宽度和位置,极大提高了道路检测的效率和准确性,降低了传统人工检查的时间成本和误判率,确保及时维护道路安全。

智能道路裂缝检测与分析系统的应用场景包括

城市道路维护:定期检测市区道路,评估道路状况,为维修计划的制定提供数据支持。

高速公路监控:在高速公路上快速识别裂缝,及时进行修补,防止裂缝扩大。

机场跑道管理:确保飞机起降的安全,定期对跑道的裂缝进行监测和维护。

桥梁检查:对桥面的裂缝进行自动检测,预防桥梁结构受损,维护交通安全。

公路工程质量检测:工程建设后的质量控制环节,检测并记录道路的裂缝情况。

道路健康监测系统集成:作为智能交通系统或城市管理系统的一部分,提供道路状况的持续监测。

总结来说,基于YOLOv8算法开发的智能道路裂缝检测与分析系统,是道路维护管理的强有力工具。通过自动化和智能化处理道路状况数据,该系统大大提高的道路检测工作的效率和准确性,有助于及早预防和修复道路损伤,确保交通安全,并最终导致道路管理成本的降低和公共安全的提高。随着交通基础设施的不断增长和升级,此类智能监测系统将在城市管理和基础设施维护中发挥越来越重要的作用。

博主通过搜集道路裂缝的相关数据图片,根据YOLOv8的目标分割技术,基于python与Pyqt5开发了一款界面简洁的智能道路裂缝检测与分析系统,可支持图片、视频以及摄像头检测,同时可以将图片、视频以及摄像头的检测结果进行保存本文详细的介绍了此系统的核心功能以及所使用到的技术原理与制作流程。

软件初始界面如下图所示:

检测结果界面如下:

检测结果说明:

裂缝最大与最小宽度的单位为像素px;
裂缝最大与最小宽度的位置表示其对应最大与最小宽度处的裂缝中心点位置。

一、软件核心功能介绍及效果演示

软件主要功能

1. 可进行道路裂缝的检测与分割
2. 可对每条裂缝进行分析,并且显示每条裂缝的最大与最小宽度及其位置,以像素点为单位;【注对于分叉的裂缝,宽度及位置数值可能不准确】
3. 支持图片、图片批量、视频及摄像头进行检测分割;
4. 可显示总分割面积占比以及单个目标的分割面积占比
5. 界面可实时显示目标位置分割结果分割面积占比裂缝最大最小宽度及位置置信度用时等信息;
6. 结果保存:支持图片视频摄像头分割及分析结果保存

界面参数设置说明

  1. 置信度阈值:也就是目标检测时的conf参数,只有检测出的目标置信度大于该值,结果才会显示;
  2. 交并比阈值:也就是目标检测时的iou参数,只有目标检测框的交并比大于该值,结果才会显示;
  3. 窗口1:显示分割结果:表示是否在检测图片中显示分割结果,默认勾选;
  4. 窗口1:显示检测框与标签:表示是否在检测图片中显示检测框与标签,默认勾选;
  5. 窗口2:显示Mask或者显示原始分割图片:表示在窗口2中显示分割的Mask或者原始图片分割内容
  6. 窗口2:显示分析结果:表示是否在窗口2中显示裂缝的最大最小宽度数值及具体位置

IoU:全称为Intersection over

Union,表示交并比。在目标检测中,它用于衡量模型生成的候选框与原标记框之间的重叠程度。IoU值越大,表示两个框之间的相似性越高。通常,当IoU值大于0.5时,认为可以检测到目标物体。这个指标常用于评估模型在特定数据集上的检测准确度。

显示Mask或者显示原始分割图片,及显示分析结果选项的功能效果如下:

(1)图片检测演示

1.点击打开图片按钮,选择需要检测的图片,或者点击打开文件夹按钮,选择需要批量检测图片所在的文件夹,操作演示如下:

2.点击目标下拉框后,可以选定指定目标的结果信息进行显示。
3.
点击保存按钮,会对图片检测结果进行保存,存储路径为:save_data目录下。

4.点击表格中的指定行,界面会显示该行表格所写的信息内容。

注:右侧目标位置默认显示置信度最大一个目标位置,可用下拉框进行信息切换。所有检测结果均在表格中显示。

单个图片检测操作如下:

批量图片检测操作如下:

点击保存按钮,会对图片的检测结果进行保存,共会保存3种类型结果,分别是:检测分割结果标识图片、分割的Mask图片以及原图分割后的图片。存储在save_data目录下,保存结果如下:

(2)视频检测演示

1.点击打开视频图标,打开选择需要检测的视频,就会自动显示检测结果。再次点击该按钮,会关闭视频

2.点击保存按钮,会对视频检测结果进行保存,同样会保存3种类型结果,分别是:检测分割结果标识视频、分割Mask视频以及原视频分割后的视频,存储路径为:save_data目录下。

视频检测演示:

视频保存演示:

视频检测保存结果如下:

(3)摄像头检测演示

1.点击打开摄像头按钮,可以打开摄像头,可以实时进行检测,再次点击该按钮,可关闭摄像头

2.点击保存按钮,可以进行摄像头实时图像的检测结果保存

摄像头检测演示:

摄像头保存演示:

摄像头检测保存结果如下:

(4)检测结果保存

点击保存按钮后,会将当前选择的图片【含批量图片】、视频或者摄像头的分割结果进行保存。结果会存储在save_data目录下,保存内容如下:

基于YOLOv8深度学习的智能道路裂缝检测与分析系统【python源码+Pyqt5界面+数据集+训练代码】深度学习实战、目标检测、目标分割(2)https://developer.aliyun.com/article/1536750

相关文章
|
23天前
|
存储 缓存 Java
Python高性能编程:五种核心优化技术的原理与Python代码
Python在高性能应用场景中常因执行速度不及C、C++等编译型语言而受质疑,但通过合理利用标准库的优化特性,如`__slots__`机制、列表推导式、`@lru_cache`装饰器和生成器等,可以显著提升代码效率。本文详细介绍了这些实用的性能优化技术,帮助开发者在不牺牲代码质量的前提下提高程序性能。实验数据表明,这些优化方法能在内存使用和计算效率方面带来显著改进,适用于大规模数据处理、递归计算等场景。
58 5
Python高性能编程:五种核心优化技术的原理与Python代码
|
2月前
|
Python
课程设计项目之基于Python实现围棋游戏代码
游戏进去默认为九路玩法,当然也可以选择十三路或是十九路玩法 使用pycharam打开项目,pip安装模块并引用,然后运行即可, 代码每行都有详细的注释,可以做课程设计或者毕业设计项目参考
78 33
|
2月前
|
JavaScript API C#
【Azure Developer】Python代码调用Graph API将外部用户添加到组,结果无效,也无错误信息
根据Graph API文档,在单个请求中将多个成员添加到组时,Python代码示例中的`members@odata.bind`被错误写为`members@odata_bind`,导致用户未成功添加。
52 10
|
2月前
|
数据可视化 Python
以下是一些常用的图表类型及其Python代码示例,使用Matplotlib和Seaborn库。
通过这些思维导图和分析说明表,您可以更直观地理解和选择适合的数据可视化图表类型,帮助更有效地展示和分析数据。
105 8
|
2月前
|
Python
探索Python中的装饰器:简化代码,增强功能
在Python的世界里,装饰器就像是给函数穿上了一件神奇的外套,让它们拥有了超能力。本文将通过浅显易懂的语言和生动的比喻,带你了解装饰器的基本概念、使用方法以及它们如何让你的代码变得更加简洁高效。让我们一起揭开装饰器的神秘面纱,看看它是如何在不改变函数核心逻辑的情况下,为函数增添新功能的吧!
|
1天前
|
机器学习/深度学习 自然语言处理 监控
深入探索:深度学习在时间序列预测中的强大应用与实现
时间序列分析是数据科学和机器学习中一个重要的研究领域,广泛应用于金融市场、天气预报、能源管理、交通预测、健康监控等多个领域。时间序列数据具有顺序相关性,通常展示出时间上较强的依赖性,因此简单的传统回归模型往往不能捕捉其中复杂的动态特征。深度学习通过其非线性建模能力和层次结构的特征提取能力,能够有效地捕捉复杂的时间相关性和非线性动态变化模式,从而在时间序列分析中展现出极大的潜力。
|
1天前
|
机器学习/深度学习 运维 资源调度
深度学习在资源利用率优化中的应用:让服务器更聪明
深度学习在资源利用率优化中的应用:让服务器更聪明
15 6
|
6天前
|
机器学习/深度学习 人工智能 运维
深度学习在流量监控中的革命性应用
深度学习在流量监控中的革命性应用
69 40
|
27天前
|
机器学习/深度学习 运维 安全
深度学习在安全事件检测中的应用:守护数字世界的利器
深度学习在安全事件检测中的应用:守护数字世界的利器
73 22
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习的原理与应用:开启智能时代的大门
深度学习的原理与应用:开启智能时代的大门
207 16

热门文章

最新文章

推荐镜像

更多