基于YOLOv8深度学习的葡萄簇目标检测系统【python源码+Pyqt5界面+数据集+训练代码】目标检测、深度学习实战

简介: 基于YOLOv8深度学习的葡萄簇目标检测系统【python源码+Pyqt5界面+数据集+训练代码】目标检测、深度学习实战

前言

葡萄簇目标检测系统能够自动检测葡萄园中的葡萄簇对象,这一技术的开发对现代农业尤为重要。它不仅能够提高葡萄园的管理效率,而且还可以提升果实质量、优化收成时机和方法,进而提高整体产量和降低生产成本。系统对于精确农业和数据驱动的作物管理是一大助力,同时有助于实现可持续发展的农业实践。

葡萄簇目标检测系统的应用场景有很多,例如:

产量预估:通过检测葡萄簇,系统可以帮助估计葡萄园的整体产量,从而做出更好的市场策略和资源分配。

病虫害检测:自动识别可能暗示病害或虫害的迹象,为防治措施提供实时数据支持。

自动化收获:在安装于自动化采摘机器或无人机上时,可以精确识别成熟葡萄簇,辅助或完全实现收获自动化。

成熟度评估:定期监测葡萄簇的生长状态,确定最佳采摘时机,以确保果实的品质。

精细化管理:详细记录葡萄生长情况,帮助农场主做出基于数据的灌溉、施肥等决策。

科研与教学:为葡萄生长研究提供照片资料,支持农业科研和教育工作。

简单总结,葡萄簇目标检测系统的引入对于现代葡萄栽培具有显著意义,它不仅可以优化生产管理,降低人力成本,还能够通过精确监控提高葡萄产品的市场竞争力。此系统代表了信息技术在农业领域应用的积极趋势,有助于推动农业自动化和智能化的发展。

博主通过搜集实际葡萄园场景中的葡萄簇相关数据图片,根据YOLOv8的目标检测技术,基于python与Pyqt5开发了一款界面简洁的葡萄簇目标检测系统,可支持图片、视频以及摄像头检测,同时可以将图片或者视频检测结果进行保存

软件初始界面如下图所示:

检测结果界面如下:

一、软件核心功能介绍及效果演示

软件主要功能

1. 可对实际图像中的葡萄簇对象进行检测;
2. 支持图片、视频及摄像头进行检测,同时支持图片的批量检测
3. 界面可实时显示目标位置目标总数置信度用时等信息;
4. 支持图片或者视频检测结果保存

(1)图片检测演示

点击图片图标,选择需要检测的图片,或者点击文件夹图标,选择需要批量检测图片所在的文件夹,操作演示如下:

点击目标下拉框后,可以选定指定目标的结果信息进行显示。 点击保存按钮,会对视频检测结果进行保存,存储路径为:save_data目录下。

注:1.右侧目标位置默认显示置信度最大一个目标位置。所有检测结果均在左下方表格中显示。

单个图片检测操作如下:

批量图片检测操作如下:

(2)视频检测演示

点击视频图标,打开选择需要检测的视频,就会自动显示检测结果。点击保存按钮,会对视频检测结果进行保存,存储路径为:save_data目录下。

(3)摄像头检测演示

点击摄像头图标,可以打开摄像头,可以实时进行检测,再次点击摄像头图标,可关闭摄像头。

(4)保存图片与视频检测结果

点击保存按钮后,会将当前选择的图片【含批量图片】或者视频的检测结果进行保存。检测的图片与视频结果会存储在save_data目录下。

二、模型的训练、评估与推理

1.YOLOv8的基本原理

YOLOv8是一种前沿的目标检测技术,它基于先前YOLO版本在目标检测任务上的成功,进一步提升了性能和灵活性。主要的创新点包括一个新的骨干网络、一个新的 Ancher-Free 检测头和一个新的损失函数,可以在从 CPU 到 GPU 的各种硬件平台上运行

其主要网络结构如下:

2. 数据集准备与训练

本文使用的数据集实际葡萄园场景中拍摄的图片,并使用Labelimg标注工具对每张图片中的目标边框(Bounding Box)及类别进行标注。部分图像及标注如下图所示。:

图片数据的存放格式如下,在项目目录中新建datasets目录,同时将检测的图片分为训练集与验证集放入GrapeData目录下。

同时我们需要新建一个data.yaml文件,用于存储训练数据的路径及模型需要进行检测的类别。YOLOv8在进行模型训练时,会读取该文件的信息,用于进行模型的训练与验证。data.yaml的具体内容如下:

train: E:\MyCVProgram\GrapeDetection\datasets\GrapeData\train  # train images (relative to 'path') 128 images
val: E:\MyCVProgram\GrapeDetection\datasets\GrapeData\val  # val images (relative to 'path') 128 images
# number of classes
nc: 1
# Classes
names: ['Grape']

注:train与val后面表示需要训练图片的路径,建议直接写自己文件的绝对路径。

数据准备完成后,通过调用train.py文件进行模型训练,epochs参数用于调整训练的轮数,batch参数用于调整训练的批次大小【根据内存大小调整,最小为1】,代码如下:

#coding:utf-8
from ultralytics import YOLO
# 加载预训练模型
model = YOLO("yolov8n.pt")
# Use the model
if __name__ == '__main__':
    # Use the model
    results = model.train(data='datasets/GrapeData/data.yaml', epochs=300, batch=4)  # 训练模型
    # 将模型转为onnx格式
    # success = model.export(format='onnx')

3. 训练结果评估

在深度学习中,我们通常用损失函数下降的曲线来观察模型训练的情况。YOLOv8在训练时主要包含三个方面的损失:定位损失(box_loss)、分类损失(cls_loss)和动态特征损失(dfl_loss),在训练结束后,可以在runs/目录下找到训练过程及结果文件,如下所示:

各损失函数作用说明:

定位损失box_loss:预测框与标定框之间的误差(GIoU),越小定位得越准;

分类损失cls_loss:计算锚框与对应的标定分类是否正确,越小分类得越准;

动态特征损失(dfl_loss):DFLLoss是一种用于回归预测框与目标框之间距离的损失函数。在计算损失时,目标框需要缩放到特征图尺度,即除以相应的stride,并与预测的边界框计算Ciou Loss,同时与预测的anchors中心点到各边的距离计算回归DFLLoss。这个过程是YOLOv8训练流程中的一部分,通过计算DFLLoss可以更准确地调整预测框的位置,提高目标检测的准确性。

本文训练结果如下:

我们通常用PR曲线来体现精确率和召回率的关系,本文训练结果的PR曲线如下。mAP表示Precision和Recall作为两轴作图后围成的面积,m表示平均,@后面的数表示判定iou为正负样本的阈值。mAP@.5:表示阈值大于0.5的平均mAP,可以看到本文模型4目标检测的mAP@0.5值为0.84,结果还是很不错的。

4. 检测结果识别

模型训练完成后,我们可以得到一个最佳的训练结果模型best.pt文件,在runs/trian/weights目录下。我们可以使用该文件进行后续的推理检测。

图片检测代码如下:

#coding:utf-8
from ultralytics import YOLO
import cv2
# 所需加载的模型目录
path = 'models/best.pt'
# 需要检测的图片地址
img_path = "TestFiles/IMG_0209_0.jpg"
# 加载预训练模型
# conf  0.25  object confidence threshold for detection
# iou 0.7 intersection over union (IoU) threshold for NMS
model = YOLO(path, task='detect')
# model = YOLO(path, task='detect',conf=0.5)
# 检测图片
results = model(img_path)
res = results[0].plot()
res = cv2.resize(res,dsize=None,fx=0.5,fy=0.5,interpolation=cv2.INTER_LINEAR)
cv2.imshow("YOLOv8 Detection", res)
cv2.waitKey(0)

执行上述代码后,会将执行的结果直接标注在图片上,结果如下:

以上便是关于此款葡萄簇目标检测系统的原理与代码介绍。基于此模型,博主用pythonPyqt5开发了一个带界面的软件系统,即文中第二部分的演示内容,能够很好的支持图片、视频及摄像头进行检测,同时支持检测结果的保存

相关文章
|
2天前
|
机器学习/深度学习 数据采集 数据可视化
深度学习实践:构建并训练卷积神经网络(CNN)对CIFAR-10数据集进行分类
本文详细介绍如何使用PyTorch构建并训练卷积神经网络(CNN)对CIFAR-10数据集进行图像分类。从数据预处理、模型定义到训练过程及结果可视化,文章全面展示了深度学习项目的全流程。通过实际操作,读者可以深入了解CNN在图像分类任务中的应用,并掌握PyTorch的基本使用方法。希望本文为您的深度学习项目提供有价值的参考与启示。
|
14天前
|
机器学习/深度学习 JavaScript 前端开发
深度学习必备:对数据集的拆分、根据拆分图片拆分labels、对全部标注标签进行区间检查
使用JavaScript代码或浏览器扩展可以一次性在浏览器中打开多个相同的标签页。
|
14天前
|
Ubuntu Linux 数据安全/隐私保护
使用Cython库包对python的py文件(源码)进行加密,把python的.py文件生成.so文件并调用
本文介绍了在Linux系统(Ubuntu 18.04)下将Python源代码(`.py文件`)加密为`.so文件`的方法。首先安装必要的工具如`python3-dev`、`gcc`和`Cython`。然后通过`setup.py`脚本使用Cython将`.py文件`转化为`.so文件`,从而实现源代码的加密保护。文中详细描述了从编写源代码到生成及调用`.so文件`的具体步骤。此方法相较于转化为`.pyc文件`提供了更高的安全性。
29 2
|
14天前
|
算法 关系型数据库 程序员
程序员必备技能)基于Python的鼠标与键盘控制实战扩展与源码
这篇文章是关于如何使用Python的`pyautogui`库来控制鼠标和键盘进行各种操作,包括移动、点击、滚轮控制以及键盘的按键和快捷键输出,并介绍了如何结合图像处理和计算机视觉技术来扩展其应用。
|
21天前
|
前端开发 JavaScript 关系型数据库
基于Python+Vue开发的电影订票管理系统
该项目是基于Python+Vue开发的电影订票管理系统(前后端分离),这是一项为大学生课程设计作业而开发的项目。该系统旨在帮助大学生学习并掌握Python编程技能,同时锻炼他们的项目设计与开发能力。通过学习基于Python的电影订票管理系统项目,大学生可以在实践中学习和提升自己的能力,为以后的职业发展打下坚实基础。
18 1
|
1月前
|
数据采集 数据可视化 关系型数据库
【优秀python web设计】基于Python flask的猫眼电影可视化系统,可视化用echart,前端Layui,数据库用MySQL,包括爬虫
本文介绍了一个基于Python Flask框架、MySQL数据库和Layui前端框架的猫眼电影数据采集分析与可视化系统,该系统通过爬虫技术采集电影数据,利用数据分析库进行处理,并使用Echart进行数据的可视化展示,以提供全面、准确的电影市场分析结果。
|
1月前
|
存储 数据采集 数据可视化
基于Python flask+MySQL+echart的电影数据分析可视化系统
该博客文章介绍了一个基于Python Flask框架、MySQL数据库和ECharts库构建的电影数据分析可视化系统,系统功能包括猫眼电影数据的爬取、存储、展示以及电影评价词云图的生成。
|
1月前
|
数据采集 存储 数据可视化
基于Python flask的猫眼电影票房数据分析可视化系统,可以定制可视化
本文介绍了一个基于Python Flask框架开发的猫眼电影票房数据分析可视化系统,该系统集成了数据爬取、存储处理、可视化展示和用户交互功能,使用户能够直观地分析和展示电影票房数据,具有高度定制性。
基于Python flask的猫眼电影票房数据分析可视化系统,可以定制可视化
|
1月前
|
机器学习/深度学习 算法 数据可视化
基于Python flask的豆瓣电影数据分析可视化系统,功能多,LSTM算法+注意力机制实现情感分析,准确率高达85%
本文介绍了一个基于Python Flask框架的豆瓣电影数据分析可视化系统,该系统集成了LSTM算法和注意力机制进行情感分析,准确率高达85%,提供了多样化的数据分析和情感识别功能,旨在帮助用户深入理解电影市场和观众喜好。
|
小程序 数据安全/隐私保护 Python
Python电影售票系统
电影售票系统程序,应具备以下几点功能:
202 0
Python电影售票系统