基于YOLOv8深度学习的水稻害虫检测与识别系统【python源码+Pyqt5界面+数据集+训练代码】目标检测、深度学习实战

简介: 基于YOLOv8深度学习的水稻害虫检测与识别系统【python源码+Pyqt5界面+数据集+训练代码】目标检测、深度学习实战

前言

水稻害虫检测与识别系统的重要性在于能够迅速准确地识别出对水稻植株构成威胁的不同害虫种类。这一点对于保障农作物的健康成长、提高产量和质量至关重要。害虫的侵害可以导致水稻受到病理性损害,影响植株的生长发育,甚至造成大面积减产或绝收。及时识别出害虫种类后,农民和农业技术人员可以采取针对性的防控措施,比如施用特定的农药或者采用生物防治等环保方式,从而减少化学药品的使用,保护生态环境,同时降低农业生产成本。

在实际应用场景中,水稻害虫检测与识别系统可以被广泛运用于农田实时监控、农业病虫害预警系统、精准农业管理平台、农业咨询服务、农业研究与教育等多个方面。

例如,在农田监控系统中,通过安装摄像头和依托YOLOv8实现的害虫检测系统,可以持续监测田间害虫发生情况,并提供实时数据反馈,帮助农业生产者做出快速反应。在农业教育和推广中,这一系统也可以作为一个有力工具,教育农民识别不同害虫,提高他们的防控意识和能力。

此外,研究人员可以利用这一系统收集害虫数据,分析害虫发生规律和影响因素,从而为农业害虫管理和控制策略的制定提供科学依据。

博主通过搜集并整理不同水稻害虫的相关数据图片,根据YOLOv8的目标检测技术,基于python与Pyqt5开发了一款界面简洁的水稻害虫检测与识别系统,可支持图片、视频以及摄像头检测,同时可以将图片或者视频检测结果进行保存

软件初始界面如下图所示:

检测结果界面如下:

一、软件核心功能介绍及效果演示

软件主要功能

1. 可进行14种水稻害虫的目标检测,分别是 ['水稻叶卷螟', '水稻叶蝉', '稻茎蝇', '亚洲稻螟', '黄稻螟', '稻瘿蚊', '水稻螟', '褐飞虱', '白背飞虱', '小褐飞虱', '稻水象甲', '稻叶蝉', '粮食白粉蝇', '稻壳虫']
2. 支持图片、视频及摄像头进行检测,同时支持图片的批量检测
3. 界面可实时显示目标位置目标总数置信度用时等信息;
4. 支持图片或者视频检测结果保存

(1)图片检测演示

点击图片图标,选择需要检测的图片,或者点击文件夹图标,选择需要批量检测图片所在的文件夹,操作演示如下:

点击目标下拉框后,可以选定指定目标的结果信息进行显示。 点击保存按钮,会对视频检测结果进行保存,存储路径为:save_data目录下。

注:1.右侧目标位置默认显示置信度最大一个目标位置。所有检测结果均在左下方表格中显示。

单个图片检测操作如下:

批量图片检测操作如下:

(2)视频检测演示

点击视频图标,打开选择需要检测的视频,就会自动显示检测结果。点击保存按钮,会对视频检测结果进行保存,存储路径为:save_data目录下。

(3)摄像头检测演示

点击摄像头图标,可以打开摄像头,可以实时进行检测,再次点击摄像头图标,可关闭摄像头。

(4)保存图片与视频检测结果

点击保存按钮后,会将当前选择的图片【含批量图片】或者视频的检测结果进行保存。检测的图片与视频结果会存储在save_data目录下。

二、模型的训练、评估与推理

1.YOLOv8的基本原理

YOLOv8是一种前沿的目标检测技术,它基于先前YOLO版本在目标检测任务上的成功,进一步提升了性能和灵活性。主要的创新点包括一个新的骨干网络、一个新的 Ancher-Free 检测头和一个新的损失函数,可以在从 CPU 到 GPU 的各种硬件平台上运行

其主要网络结构如下:

2. 数据集准备与训练

通过网络上搜集关于水稻害虫的各类图片,并使用LabelMe标注工具对每张图片中的目标边框(Bounding Box)及类别进行标注。一共包含1248张图片,其中训练集包含1060张图片验证集包含188张图片,部分图像及标注如下图所示。

图片数据的存放格式如下,在项目目录中新建datasets目录,同时将跌倒检测的图片分为训练集与验证集放入RiceInsectData目录下。

同时我们需要新建一个data.yaml文件,用于存储训练数据的路径及模型需要进行检测的类别。YOLOv8在进行模型训练时,会读取该文件的信息,用于进行模型的训练与验证。data.yaml的具体内容如下:

train: E:\MyCVProgram\RiceInsectDetection\datasets\RiceInsectData\train
val: E:\MyCVProgram\RiceInsectDetection\datasets\RiceInsectData\val
nc: 14
names: ['rice leaf roller', 'rice leaf caterpillar', 'paddy stem maggot', 'asiatic rice borer', 'yellow rice borer', 'rice gall midge', 'Rice Stemfly', 'brown plant hopper', 'white backed plant hopper', 'small brown plant hopper', 'rice water weevil', 'rice leafhopper', 'grain spreader thrips', 'rice shell pest']

注:train与val后面表示需要训练图片的路径,建议直接写自己文件的绝对路径。

数据准备完成后,通过调用train.py文件进行模型训练,epochs参数用于调整训练的轮数,batch参数用于调整训练的批次大小【根据内存大小调整,最小为1】,代码如下:

# 加载模型
model = YOLO("yolov8n.pt")  # 加载预训练模型
# Use the model
if __name__ == '__main__':
    # Use the model
    results = model.train(data='datasets/RiceInsectData/data.yaml', epochs=250, batch=4)  # 训练模型
    # 将模型转为onnx格式
    # success = model.export(format='onnx')

3. 训练结果评估

在深度学习中,我们通常用损失函数下降的曲线来观察模型训练的情况。YOLOv8在训练时主要包含三个方面的损失:定位损失(box_loss)、分类损失(cls_loss)和动态特征损失(dfl_loss),在训练结束后,可以在runs/目录下找到训练过程及结果文件,如下所示:

各损失函数作用说明:

定位损失box_loss:预测框与标定框之间的误差(GIoU),越小定位得越准;

分类损失cls_loss:计算锚框与对应的标定分类是否正确,越小分类得越准;

动态特征损失(dfl_loss):DFLLoss是一种用于回归预测框与目标框之间距离的损失函数。在计算损失时,目标框需要缩放到特征图尺度,即除以相应的stride,并与预测的边界框计算Ciou Loss,同时与预测的anchors中心点到各边的距离计算回归DFLLoss。这个过程是YOLOv8训练流程中的一部分,通过计算DFLLoss可以更准确地调整预测框的位置,提高目标检测的准确性。

本文训练结果如下:

我们通常用PR曲线来体现精确率和召回率的关系,本文训练结果的PR曲线如下。mAP表示Precision和Recall作为两轴作图后围成的面积,m表示平均,@后面的数表示判定iou为正负样本的阈值。mAP@.5:表示阈值大于0.5的平均mAP,可以看到本文模型14类目标检测的mAP@0.5平均值为0.8,结果还是很不错的,由于有些品类的样本偏少一点,影响了检测精度,可以进一步优化

4. 检测结果识别

模型训练完成后,我们可以得到一个最佳的训练结果模型best.pt文件,在runs/trian/weights目录下。我们可以使用该文件进行后续的推理检测。

图片检测代码如下:

# 所需加载的模型目录
path = 'models/best.pt'
# 需要检测的图片地址
img_path = "TestFiles/IP000000114.jpg"
# 加载预训练模型
# conf  0.25  object confidence threshold for detection
# iou 0.7 intersection over union (IoU) threshold for NMS
model = YOLO(path, task='detect')
# model = YOLO(path, task='detect',conf=0.5)
# 检测图片
results = model(img_path)
res = results[0].plot()
cv2.imshow("YOLOv8 Detection", res)
cv2.waitKey(0)

执行上述代码后,会将执行的结果直接标注在图片上,结果如下:

以上便是关于此款水稻害虫检测与识别系统的原理与代码介绍。基于此模型,博主用pythonPyqt5开发了一个带界面的软件系统,即文中第二部分的演示内容,能够很好的支持图片、视频及摄像头进行检测,同时支持检测结果的保存

相关文章
|
2天前
|
机器学习/深度学习 数据采集 TensorFlow
使用Python实现深度学习模型:智能药物研发与筛选
使用Python实现深度学习模型:智能药物研发与筛选
33 15
|
2天前
|
机器学习/深度学习 数据挖掘 TensorFlow
从数据小白到AI专家:Python数据分析与TensorFlow/PyTorch深度学习的蜕变之路
【9月更文挑战第10天】从数据新手成长为AI专家,需先掌握Python基础语法,并学会使用NumPy和Pandas进行数据分析。接着,通过Matplotlib和Seaborn实现数据可视化,最后利用TensorFlow或PyTorch探索深度学习。这一过程涉及从数据清洗、可视化到构建神经网络的多个步骤,每一步都需不断实践与学习。借助Python的强大功能及各类库的支持,你能逐步解锁数据的深层价值。
10 0
|
3天前
|
机器学习/深度学习 数据采集 存储
使用Python实现深度学习模型:智能医疗影像分析
使用Python实现深度学习模型:智能医疗影像分析
11 0
|
7天前
|
数据采集 机器学习/深度学习 数据挖掘
探索Python编程之美:从基础到进阶
【9月更文挑战第4天】在数字时代的浪潮中,编程已成为一种新兴的“超能力”。Python,作为一门易于上手且功能强大的编程语言,正吸引着越来越多的学习者。本文将带领读者走进Python的世界,从零基础出发,逐步深入,探索这门语言的独特魅力和广泛应用。通过具体代码示例,我们将一起解锁编程的乐趣,并理解如何利用Python解决实际问题。无论你是编程新手还是希望提升技能的开发者,这篇文章都将为你打开一扇通往高效编程的大门。
|
2天前
|
存储 数据采集 人工智能
探索Python编程之美——从基础到进阶
【9月更文挑战第9天】本文是一篇深入浅出的技术分享文章,旨在引导读者从零基础开始掌握Python编程。我们将通过生动的实例和代码示例,探讨Python的基本语法、数据结构、函数、模块以及面向对象编程等核心概念。无论你是初学者还是有一定经验的开发者,都能在这篇文章中找到有价值的内容。让我们一起开启Python编程之旅吧!
17 11
|
3天前
|
Python
探索Python编程的奥秘:打造你的第一个程序
【9月更文挑战第8天】本文将带你进入Python编程的世界,通过一个有趣的项目——制作一个简单的猜数字游戏,让你快速入门。我们不仅会分享代码编写的步骤,还会讲解每一行代码的含义和作用,确保即使是编程新手也能跟上节奏。文章末尾附有完整代码,方便读者实践和学习。
19 12
|
3天前
|
API Python
探索Python中的多线程编程
探索Python中的多线程编程
22 5
|
6天前
|
存储 开发者 Python
探索Python编程之美
【9月更文挑战第5天】在这篇文章中,我们将一起踏上一场Python编程的奇妙之旅。从基础语法到高级特性,我们将一步步揭开Python语言的神秘面纱。你将学习如何编写清晰、高效的代码,掌握函数、类和模块的使用,以及理解面向对象编程的核心概念。此外,我们还将探讨异常处理、文件操作等实用技能。无论你是初学者还是有一定经验的开发者,这篇文章都将为你提供宝贵的知识和技巧,让你在编程的道路上更加从容自信。
|
3天前
|
Python
揭秘!Python系统编程里那些让代码自由穿梭的神奇代码行
【9月更文挑战第9天】在Python的世界里,一些简洁的代码行却蕴含着强大的功能,如列表推导式让列表生成仅需一行代码:`squares = [x**2 for x in range(10)]`。`with`语句则能自动管理文件和网络连接的关闭,如`with open('example.txt', 'r') as file:`。`lambda`函数和装饰器则允许快速定义函数和增强功能,而上下文管理器更是资源处理的利器。这些特性让Python代码更加优雅高效。
12 4
|
2天前
|
安全 数据安全/隐私保护 Python
Python系统编程实战:文件系统操作与I/O管理,让你的代码更优雅
【9月更文挑战第10天】Python不仅在数据分析和Web开发中表现出色,在系统编程领域也展现出独特魅力。本文将带你深入探讨Python中的文件系统操作与I/O管理,涵盖os、shutil和pathlib等模块的基础使用方法,并通过示例代码展示如何优雅地实现这些功能。通过掌握缓冲、异步I/O等高级特性,你将能够编写更高效、安全且易于维护的Python代码。示例包括使用pathlib遍历目录、设置缓冲区提升文件写入性能以及使用aiofiles实现异步文件操作。掌握这些技能,让你在Python系统编程中更加得心应手。
10 2