【从零开始学习深度学习】49.Pytorch_NLP项目实战:文本情感分类---使用循环神经网络RNN

本文涉及的产品
NLP自然语言处理_基础版,每接口每天50万次
NLP 自学习平台,3个模型定制额度 1个月
NLP自然语言处理_高级版,每接口累计50万次
简介: 【从零开始学习深度学习】49.Pytorch_NLP项目实战:文本情感分类---使用循环神经网络RNN

同上一篇文章中的搜索近义词和类比词一样,文本分类也属于词嵌入的下游应用。本文,我们将应用预训练的词向量和含多个隐藏层的双向循环神经网络,来判断一段不定长的文本序列中包含的是正面还是负面的情绪。

导入所需的包或模块。

import collections
import os
import random
import tarfile
import torch
from torch import nn
import torchtext.vocab as Vocab
import torch.utils.data as Data
import sys
import d2lzh_pytorch as d2l
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
DATA_ROOT = "./Datasets"

1 文本情感分类数据

我们使用斯坦福的IMDb数据集(Stanford’s Large Movie Review Dataset)作为文本情感分类的数据集 。这个数据集分为训练和测试用的两个数据集,分别包含25,000条从IMDb下载的关于电影的评论。在每个数据集中,标签为“正面”和“负面”的评论数量相等。

1.1 读取数据

首先下载数据集到DATA_ROOT路径下,然后解压。

关注GZH:阿旭算法与机器学习,回复:“文本情感分类”即可获取本文数据集与项目文档,欢迎共同学习交流

fname = os.path.join(DATA_ROOT, "aclImdb_v1.tar.gz")
if not os.path.exists(os.path.join(DATA_ROOT, "aclImdb")):
    print("从压缩包解压...")
    with tarfile.open(fname, 'r') as f:
        f.extractall(DATA_ROOT)

接下来,读取训练数据集和测试数据集。每个样本是一条评论及其对应的标签:1表示“正面”,0表示“负面”。

from tqdm import tqdm
def read_imdb(folder='train', data_root="./Datasets/aclImdb"): 
    data = []
    for label in ['pos', 'neg']:
        folder_name = os.path.join(data_root, folder, label)
        for file in tqdm(os.listdir(folder_name)):
            with open(os.path.join(folder_name, file), 'rb') as f:
                review = f.read().decode('utf-8').replace('\n', '').lower()
                data.append([review, 1 if label == 'pos' else 0])
    random.shuffle(data)
    return data
train_data, test_data = read_imdb('train'), read_imdb('test')

1.2 预处理数据

我们需要对每条评论做分词,从而得到分好词的评论。这里定义的get_tokenized_imdb函数使用最简单的方法:基于空格进行分词。

def get_tokenized_imdb(data):
    """
    data: list of [string, label]
    """
    def tokenizer(text):
        return [tok.lower() for tok in text.split(' ')]
    return [tokenizer(review) for review, _ in data]

现在,我们可以根据分好词的训练数据集来创建词典了。我们在这里过滤掉了出现次数少于5的词。

def get_vocab_imdb(data):
    tokenized_data = get_tokenized_imdb(data)
    counter = collections.Counter([tk for st in tokenized_data for tk in st])
    return Vocab.Vocab(counter, min_freq=5)
vocab = get_vocab_imdb(train_data)
'# words in vocab:', len(vocab)

输出:

('# words in vocab:', 46151)

因为每条评论长度不一致所以不能直接组合成小批量,我们定义preprocess_imdb函数对每条评论进行分词,并通过词典转换成词索引,然后通过截断或者补0来将每条评论长度固定成500。

def preprocess_imdb(data, vocab):
    max_l = 500  # 将每条评论通过截断或者补0,使得长度变成500
    def pad(x):
        return x[:max_l] if len(x) > max_l else x + [0] * (max_l - len(x))
    tokenized_data = get_tokenized_imdb(data)
    features = torch.tensor([pad([vocab.stoi[word] for word in words]) for words in tokenized_data])
    labels = torch.tensor([score for _, score in data])
    return features, labels

1.3 创建数据迭代器

现在,我们创建数据迭代器。每次迭代将返回一个小批量的数据。

batch_size = 64
train_set = Data.TensorDataset(*preprocess_imdb(train_data, vocab))
test_set = Data.TensorDataset(*preprocess_imdb(test_data, vocab))
train_iter = Data.DataLoader(train_set, batch_size, shuffle=True)
test_iter = Data.DataLoader(test_set, batch_size)

打印第一个小批量数据的形状以及训练集中小批量的个数。

for X, y in train_iter:
    print('X', X.shape, 'y', y.shape)
    break
'#batches:', len(train_iter)

输出:

X torch.Size([64, 500]) y torch.Size([64])
('#batches:', 391)

2 使用循环神经网络的模型

在这个模型中,每个词先通过嵌入层得到特征向量。然后,我们使用双向循环神经网络对特征序列进一步编码得到序列信息。最后,我们将编码的序列信息通过全连接层变换为输出。具体来说,我们可以将双向长短期记忆在最初时间步和最终时间步的隐藏状态连结,作为特征序列的表征传递给输出层分类。在下面实现的BiRNN类中,Embedding实例即嵌入层,LSTM实例即为序列编码的隐藏层,Linear实例即生成分类结果的输出层。

class BiRNN(nn.Module):
    def __init__(self, vocab, embed_size, num_hiddens, num_layers):
        super(BiRNN, self).__init__()
        self.embedding = nn.Embedding(len(vocab), embed_size)
        # bidirectional设为True即得到双向循环神经网络
        self.encoder = nn.LSTM(input_size=embed_size, 
                                hidden_size=num_hiddens, 
                                num_layers=num_layers,
                                bidirectional=True)
        # 初始时间步和最终时间步的隐藏状态作为全连接层输入
        self.decoder = nn.Linear(4*num_hiddens, 2)
    def forward(self, inputs):
        # inputs的形状是(批量大小, 词数),因为LSTM需要将序列长度(seq_len)作为第一维,所以将输入转置后
        # 再提取词特征,输出形状为(词数, 批量大小, 词向量维度)
        embeddings = self.embedding(inputs.permute(1, 0))
        # rnn.LSTM只传入输入embeddings,因此只返回最后一层的隐藏层在各时间步的隐藏状态。
        # outputs形状是(词数, 批量大小, 2 * 隐藏单元个数)
        outputs, _ = self.encoder(embeddings) # output, (h, c)
        # 连结初始时间步和最终时间步的隐藏状态作为全连接层输入。它的形状为
        # (批量大小, 4 * 隐藏单元个数)。
        encoding = torch.cat((outputs[0], outputs[-1]), -1)
        outs = self.decoder(encoding)
        return outs

创建一个含两个隐藏层的双向循环神经网络。

embed_size, num_hiddens, num_layers = 100, 100, 2
net = BiRNN(vocab, embed_size, num_hiddens, num_layers)

2.1 加载预训练的词向量

由于情感分类的训练数据集并不是很大,为应对过拟合,我们将直接使用在更大规模语料上预训练的词向量作为每个词的特征向量。这里,我们为词典vocab中的每个词加载100维的GloVe词向量。

glove_vocab = Vocab.GloVe(name='6B', dim=100, cache=os.path.join(DATA_ROOT, "glove"))

然后,我们将用这些词向量作为评论中每个词的特征向量。注意,预训练词向量的维度需要与创建的模型中的嵌入层输出大小embed_size一致。此外,在训练中我们不再更新这些词向量。

def load_pretrained_embedding(words, pretrained_vocab):
    """从预训练好的vocab中提取出words对应的词向量"""
    embed = torch.zeros(len(words), pretrained_vocab.vectors[0].shape[0]) # 初始化为0
    oov_count = 0 # out of vocabulary
    for i, word in enumerate(words):
        try:
            idx = pretrained_vocab.stoi[word]
            embed[i, :] = pretrained_vocab.vectors[idx]
        except KeyError:
            oov_count += 1
    if oov_count > 0:
        print("There are %d oov words." % oov_count)
    return embed
net.embedding.weight.data.copy_(
    load_pretrained_embedding(vocab.itos, glove_vocab))
net.embedding.weight.requires_grad = False # 直接加载预训练好的, 所以不需要更新它

输出:

There are 21202 oov words.

2.2 训练并评价模型

这时候就可以开始训练模型了。

lr, num_epochs = 0.01, 5
# 要过滤掉不计算梯度的embedding参数
optimizer = torch.optim.Adam(filter(lambda p: p.requires_grad, net.parameters()), lr=lr)
loss = nn.CrossEntropyLoss()
d2l.train(train_iter, test_iter, net, loss, optimizer, device, num_epochs)

输出:

training on  cuda
epoch 1, loss 0.5759, train acc 0.666, test acc 0.832, time 250.8 sec
epoch 2, loss 0.1785, train acc 0.842, test acc 0.852, time 253.3 sec
epoch 3, loss 0.1042, train acc 0.866, test acc 0.856, time 253.7 sec
epoch 4, loss 0.0682, train acc 0.888, test acc 0.868, time 254.2 sec
epoch 5, loss 0.0483, train acc 0.901, test acc 0.862, time 251.4 sec

2.3 使用模型进行预测

最后,定义预测函数。

def predict_sentiment(net, vocab, sentence):
    """sentence是词语的列表"""
    device = list(net.parameters())[0].device
    sentence = torch.tensor([vocab.stoi[word] for word in sentence], device=device)
    label = torch.argmax(net(sentence.view((1, -1))), dim=1)
    return 'positive' if label.item() == 1 else 'negative'

下面使用训练好的模型对两个简单句子的情感进行分类。

predict_sentiment(net, vocab, ['this', 'movie', 'is', 'so', 'great']) # positive
predict_sentiment(net, vocab, ['this', 'movie', 'is', 'so', 'bad']) # negative

总结

  • 文本分类把一段不定长的文本序列变换为文本的类别。它属于词嵌入的下游应用。
  • 可以应用预训练的词向量和循环神经网络对文本的情感进行分类。
相关文章
|
9天前
|
机器学习/深度学习 算法 PyTorch
深度学习笔记(十三):IOU、GIOU、DIOU、CIOU、EIOU、Focal EIOU、alpha IOU、SIOU、WIOU损失函数分析及Pytorch实现
这篇文章详细介绍了多种用于目标检测任务中的边界框回归损失函数,包括IOU、GIOU、DIOU、CIOU、EIOU、Focal EIOU、alpha IOU、SIOU和WIOU,并提供了它们的Pytorch实现代码。
20 1
深度学习笔记(十三):IOU、GIOU、DIOU、CIOU、EIOU、Focal EIOU、alpha IOU、SIOU、WIOU损失函数分析及Pytorch实现
|
28天前
|
机器学习/深度学习 PyTorch 调度
在Pytorch中为不同层设置不同学习率来提升性能,优化深度学习模型
在深度学习中,学习率作为关键超参数对模型收敛速度和性能至关重要。传统方法采用统一学习率,但研究表明为不同层设置差异化学习率能显著提升性能。本文探讨了这一策略的理论基础及PyTorch实现方法,包括模型定义、参数分组、优化器配置及训练流程。通过示例展示了如何为ResNet18设置不同层的学习率,并介绍了渐进式解冻和层适应学习率等高级技巧,帮助研究者更好地优化模型训练。
61 4
在Pytorch中为不同层设置不同学习率来提升性能,优化深度学习模型
|
11天前
|
机器学习/深度学习 算法 数据可视化
如果你的PyTorch优化器效果欠佳,试试这4种深度学习中的高级优化技术吧
在深度学习领域,优化器的选择对模型性能至关重要。尽管PyTorch中的标准优化器如SGD、Adam和AdamW被广泛应用,但在某些复杂优化问题中,这些方法未必是最优选择。本文介绍了四种高级优化技术:序列最小二乘规划(SLSQP)、粒子群优化(PSO)、协方差矩阵自适应进化策略(CMA-ES)和模拟退火(SA)。这些方法具备无梯度优化、仅需前向传播及全局优化能力等优点,尤其适合非可微操作和参数数量较少的情况。通过实验对比发现,对于特定问题,非传统优化方法可能比标准梯度下降算法表现更好。文章详细描述了这些优化技术的实现过程及结果分析,并提出了未来的研究方向。
13 1
|
17天前
|
机器学习/深度学习 PyTorch 算法框架/工具
深度学习入门案例:运用神经网络实现价格分类
深度学习入门案例:运用神经网络实现价格分类
|
16天前
|
机器学习/深度学习 数据采集 自然语言处理
【NLP自然语言处理】基于PyTorch深度学习框架构建RNN经典案例:构建人名分类器
【NLP自然语言处理】基于PyTorch深度学习框架构建RNN经典案例:构建人名分类器
|
10天前
|
算法 PyTorch 算法框架/工具
Pytorch学习笔记(九):Pytorch模型的FLOPs、模型参数量等信息输出(torchstat、thop、ptflops、torchsummary)
本文介绍了如何使用torchstat、thop、ptflops和torchsummary等工具来计算Pytorch模型的FLOPs、模型参数量等信息。
55 2
|
12天前
|
机器学习/深度学习 自然语言处理 监控
利用 PyTorch Lightning 搭建一个文本分类模型
利用 PyTorch Lightning 搭建一个文本分类模型
32 8
利用 PyTorch Lightning 搭建一个文本分类模型
|
14天前
|
机器学习/深度学习 自然语言处理 数据建模
三种Transformer模型中的注意力机制介绍及Pytorch实现:从自注意力到因果自注意力
本文深入探讨了Transformer模型中的三种关键注意力机制:自注意力、交叉注意力和因果自注意力,这些机制是GPT-4、Llama等大型语言模型的核心。文章不仅讲解了理论概念,还通过Python和PyTorch从零开始实现这些机制,帮助读者深入理解其内部工作原理。自注意力机制通过整合上下文信息增强了输入嵌入,多头注意力则通过多个并行的注意力头捕捉不同类型的依赖关系。交叉注意力则允许模型在两个不同输入序列间传递信息,适用于机器翻译和图像描述等任务。因果自注意力确保模型在生成文本时仅考虑先前的上下文,适用于解码器风格的模型。通过本文的详细解析和代码实现,读者可以全面掌握这些机制的应用潜力。
29 3
三种Transformer模型中的注意力机制介绍及Pytorch实现:从自注意力到因果自注意力
|
1月前
|
机器学习/深度学习 监控 PyTorch
PyTorch 模型调试与故障排除指南
在深度学习领域,PyTorch 成为开发和训练神经网络的主要框架之一。本文为 PyTorch 开发者提供全面的调试指南,涵盖从基础概念到高级技术的内容。目标读者包括初学者、中级开发者和高级工程师。本文探讨常见问题及解决方案,帮助读者理解 PyTorch 的核心概念、掌握调试策略、识别性能瓶颈,并通过实际案例获得实践经验。无论是在构建简单神经网络还是复杂模型,本文都将提供宝贵的洞察和实用技巧,帮助开发者更高效地开发和优化 PyTorch 模型。
35 3
PyTorch 模型调试与故障排除指南
|
17天前
|
存储 并行计算 PyTorch
探索PyTorch:模型的定义和保存方法
探索PyTorch:模型的定义和保存方法