本文我们将介绍迁移学习中的一种常用技术:微调(fine tuning)。如下图所示,微调由以下4步构成。
- 在源数据集(如ImageNet数据集)上预训练一个神经网络模型,即源模型。
- 创建一个新的神经网络模型,即目标模型。它复制了源模型上除了输出层外的所有模型设计及其参数。我们假设这些模型参数包含了源数据集上学习到的知识,且这些知识同样适用于目标数据集。我们还假设源模型的输出层跟源数据集的标签紧密相关,因此在目标模型中不予采用。
- 为目标模型添加一个输出大小为目标数据集类别个数的输出层,并随机初始化该层的模型参数。
- 在目标数据集(如椅子数据集)上训练目标模型。我们将从头训练输出层,而其余层的参数都是基于源模型的参数微调得到的。
当目标数据集远小于源数据集时,微调有助于提升模型的泛化能力。
1. 实战案例:热狗识别
接下来我们来实践一个具体的例子:热狗识别。我们将基于一个小数据集对在ImageNet数据集上训练好的ResNet模型进行微调。该小数据集含有数千张包含热狗和不包含热狗的图像。我们将使用微调得到的模型来识别一张图像中是否包含热狗。
关注GZH:阿旭算法与机器学习,回复:“微调实战”即可获取本文数据集与项目文档
首先,导入实验所需的包或模块。torchvision的models
包提供了常用的预训练模型。如果希望获取更多的预训练模型,可以使用使用pretrained-models.pytorch
仓库。
%matplotlib inline import torch from torch import nn, optim from torch.utils.data import Dataset, DataLoader import torchvision from torchvision.datasets import ImageFolder from torchvision import transforms from torchvision import models import os import sys import d2lzh_pytorch as d2l device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
1.1 获取数据集
我们使用的热狗数据集含有1400张包含热狗的正类图像,和同样多包含其他食品的负类图像。各类的1000张图像被用于训练,其余则用于测试。
我们首先将压缩后的数据集下载到路径data_dir
之下,然后在该路径将下载好的数据集解压,得到两个文件夹hotdog/train
和hotdog/test
。这两个文件夹下面均有hotdog
和not-hotdog
两个类别文件夹,每个类别文件夹里面是图像文件。
data_dir = './data' os.listdir(os.path.join(data_dir, "hotdog")) # ['train', 'test']
我们创建两个ImageFolder
实例来分别读取训练数据集和测试数据集中的所有图像文件。
train_imgs = ImageFolder(os.path.join(data_dir, 'hotdog/train')) test_imgs = ImageFolder(os.path.join(data_dir, 'hotdog/test'))
下面画出前8张正类图像和最后8张负类图像。可以看到,它们的大小和高宽比各不相同。
hotdogs = [train_imgs[i][0] for i in range(8)] not_hotdogs = [train_imgs[-i - 1][0] for i in range(8)] d2l.show_images(hotdogs + not_hotdogs, 2, 8, scale=1.4)
在训练时,我们先从图像中裁剪出随机大小和随机高宽比的一块随机区域,然后将该区域缩放为高和宽均为224像素的输入。测试时,我们将图像的高和宽均缩放为256像素,然后从中裁剪出高和宽均为224像素的中心区域作为输入。此外,我们对RGB(红、绿、蓝)三个颜色通道的数值做标准化:每个数值减去该通道所有数值的平均值,再除以该通道所有数值的标准差作为输出。
注: 在使用训练模型时,一定要将预测数据,作训练时同样的预处理。
如果你使用的是
torchvision
的models
,那就要求:All pre-trained models expect input images normalized in the same way, i.e. mini-batches of 3-channel RGB images of shape (3 x H x W), where H and W are expected to be at least 224. The images have to be loaded in to a range of [0, 1] and then normalized using mean = [0.485, 0.456, 0.406] and std = [0.229, 0.224, 0.225].
如果你使用的是
pretrained-models.pytorch
仓库,请务必阅读其README,其中说明了如何预处理。
# 指定RGB三个通道的均值和方差来将图像通道归一化 normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) train_augs = transforms.Compose([ transforms.RandomResizedCrop(size=224), transforms.RandomHorizontalFlip(), transforms.ToTensor(), normalize ]) test_augs = transforms.Compose([ transforms.Resize(size=256), transforms.CenterCrop(size=224), transforms.ToTensor(), normalize ])
1.2 定义和初始化模型
我们使用在ImageNet数据集上预训练的ResNet-18作为源模型。这里指定pretrained=True
来自动下载并加载预训练的模型参数。在第一次使用时需要联网下载模型参数。
pretrained_net = models.resnet18(pretrained=True)
不管你是使用的torchvision的
models
还是pretrained-models.pytorch
仓库,默认都会将预训练好的模型参数下载到你的home目录下.torch
文件夹。
下面打印源模型的成员变量fc
。作为一个全连接层,它将ResNet最终的全局平均池化层输出变换成ImageNet数据集上1000类的输出。
print(pretrained_net.fc)
输出:
Linear(in_features=512, out_features=1000, bias=True)
注: 如果你使用的是其他模型,那可能没有成员变量
fc
(比如models中的VGG预训练模型),所以正确做法是查看对应模型源码中其定义部分,这样既不会出错也能加深我们对模型的理解。pretrained-models.pytorch
仓库貌似统一了接口,但是我还是建议使用时查看一下对应模型的源码。
可见此时pretrained_net
最后的输出个数等于目标数据集的类别数1000。所以我们应该将最后的fc
成修改我们需要的输出类别数:
# 随机初始化输出层参数 pretrained_net.fc = nn.Linear(512, 2) print(pretrained_net.fc)
输出:
Linear(in_features=512, out_features=2, bias=True)
此时,pretrained_net
的fc
层就被随机初始化了,但是其他层依然保存着预训练得到的参数。由于是在很大的ImageNet数据集上预训练的,所以参数已经足够好,因此一般只需使用较小的学习率来微调这些参数,而fc
中的随机初始化参数一般需要更大的学习率从头训练。PyTorch可以方便的对模型的不同部分设置不同的学习参数,我们在下面代码中将fc
的学习率设为已经预训练过的部分的10倍。
output_params = list(map(id, pretrained_net.fc.parameters())) feature_params = filter(lambda p: id(p) not in output_params, pretrained_net.parameters()) lr = 0.01 optimizer = optim.SGD([{'params': feature_params}, {'params': pretrained_net.fc.parameters(), 'lr': lr * 10}], lr=lr, weight_decay=0.001)
1.3 使用微调技术训练模型
我们先定义一个使用微调的训练函数train_fine_tuning
以便多次调用。
def train_fine_tuning(net, optimizer, batch_size=128, num_epochs=5): train_iter = DataLoader(ImageFolder(os.path.join(data_dir, 'hotdog/train'), transform=train_augs), batch_size, shuffle=True) test_iter = DataLoader(ImageFolder(os.path.join(data_dir, 'hotdog/test'), transform=test_augs), batch_size) loss = torch.nn.CrossEntropyLoss() d2l.train(train_iter, test_iter, net, loss, optimizer, device, num_epochs)
根据前面的设置,我们将以10倍的学习率从头训练目标模型的输出层参数。
train_fine_tuning(pretrained_net, optimizer)
输出:
training on cuda epoch 1, loss 3.1183, train acc 0.731, test acc 0.932, time 41.4 sec epoch 2, loss 0.6471, train acc 0.829, test acc 0.869, time 25.6 sec epoch 3, loss 0.0964, train acc 0.920, test acc 0.910, time 24.9 sec epoch 4, loss 0.0659, train acc 0.922, test acc 0.936, time 25.2 sec epoch 5, loss 0.0668, train acc 0.913, test acc 0.929, time 25.0 sec
作为对比,我们定义一个相同的模型,但将它的所有模型参数都初始化为随机值。由于整个模型都需要从头训练,我们可以使用较大的学习率。
scratch_net = models.resnet18(pretrained=False, num_classes=2) lr = 0.1 optimizer = optim.SGD(scratch_net.parameters(), lr=lr, weight_decay=0.001) train_fine_tuning(scratch_net, optimizer)
输出:
training on cuda epoch 1, loss 2.6686, train acc 0.582, test acc 0.556, time 25.3 sec epoch 2, loss 0.2434, train acc 0.797, test acc 0.776, time 25.3 sec epoch 3, loss 0.1251, train acc 0.845, test acc 0.802, time 24.9 sec epoch 4, loss 0.0958, train acc 0.833, test acc 0.810, time 25.0 sec epoch 5, loss 0.0757, train acc 0.836, test acc 0.780, time 24.9 sec
可以看到,微调的模型因为参数初始值更好,往往在相同迭代周期下取得更高的精度。
总结
- 迁移学习将从源数据集学到的知识迁移到目标数据集上。微调是迁移学习的一种常用技术。
- 目标模型复制了源模型上除了输出层外的所有模型设计及其参数,并基于目标数据集微调这些参数。而目标模型的输出层需要从头训练。
- 一般来说,微调参数会使用较小的学习率,而从头训练输出层可以使用较大的学习率。