【从零开始学习深度学习】43. 算法优化之Adam算法【RMSProp算法与动量法的结合】介绍及其Pytorch实现

简介: 【从零开始学习深度学习】43. 算法优化之Adam算法【RMSProp算法与动量法的结合】介绍及其Pytorch实现

1. Adam算法介绍


image.png

image.png

2. 从零实现Adam算法

我们按照Adam算法中的公式实现该算法。其中时间步t tt通过hyperparams参数传入adam函数。

%matplotlib inline
import torch
import sys
import d2lzh_pytorch as d2l
features, labels = d2l.get_data_ch7()
def init_adam_states():
    v_w, v_b = torch.zeros((features.shape[1], 1), dtype=torch.float32), torch.zeros(1, dtype=torch.float32)
    s_w, s_b = torch.zeros((features.shape[1], 1), dtype=torch.float32), torch.zeros(1, dtype=torch.float32)
    return ((v_w, s_w), (v_b, s_b))
def adam(params, states, hyperparams):
    beta1, beta2, eps = 0.9, 0.999, 1e-6
    for p, (v, s) in zip(params, states):
        v[:] = beta1 * v + (1 - beta1) * p.grad.data
        s[:] = beta2 * s + (1 - beta2) * p.grad.data**2
        v_bias_corr = v / (1 - beta1 ** hyperparams['t'])
        s_bias_corr = s / (1 - beta2 ** hyperparams['t'])
        p.data -= hyperparams['lr'] * v_bias_corr / (torch.sqrt(s_bias_corr) + eps)
    hyperparams['t'] += 1

使用学习率为0.01的Adam算法来训练模型。

d2l.train_ch7(adam, init_adam_states(), {'lr': 0.01, 't': 1}, features, labels)

输出:

loss: 0.245370, 0.065155 sec per epoch

3. Pytorch简洁实现Adam算法–optim.Adam

通过名称为“Adam”的优化器实例,我们便可使用PyTorch提供的Adam算法。

d2l.train_pytorch_ch7(torch.optim.Adam, {'lr': 0.01}, features, labels)

输出:

loss: 0.242066, 0.056867 sec per epoch

总结

  • Adam算法在RMSProp算法的基础上对小批量随机梯度也做了指数加权移动平均。
  • Adam算法使用了偏差修正。
相关文章
|
1月前
|
机器学习/深度学习 数据采集 人工智能
PyTorch学习实战:AI从数学基础到模型优化全流程精解
本文系统讲解人工智能、机器学习与深度学习的层级关系,涵盖PyTorch环境配置、张量操作、数据预处理、神经网络基础及模型训练全流程,结合数学原理与代码实践,深入浅出地介绍激活函数、反向传播等核心概念,助力快速入门深度学习。
89 1
|
3月前
|
机器学习/深度学习 PyTorch 测试技术
从训练到推理:Intel Extension for PyTorch混合精度优化完整指南
PyTorch作为主流深度学习框架,凭借动态计算图和异构计算支持,广泛应用于视觉与自然语言处理。Intel Extension for PyTorch针对Intel硬件深度优化,尤其在GPU上通过自动混合精度(AMP)提升训练与推理性能。本文以ResNet-50在CIFAR-10上的实验为例,详解如何利用该扩展实现高效深度学习优化。
183 0
|
1月前
|
机器学习/深度学习 算法 安全
近端策略优化算法PPO的核心概念和PyTorch实现详解
近端策略优化(PPO)是强化学习中的关键算法,因其在复杂任务中的稳定表现而广泛应用。本文详解PPO核心原理,并提供基于PyTorch的完整实现方案,涵盖环境交互、优势计算与策略更新裁剪机制。通过Lunar Lander环境演示训练流程,帮助读者掌握算法精髓。
210 54
|
15天前
|
边缘计算 人工智能 PyTorch
130_知识蒸馏技术:温度参数与损失函数设计 - 教师-学生模型的优化策略与PyTorch实现
随着大型语言模型(LLM)的规模不断增长,部署这些模型面临着巨大的计算和资源挑战。以DeepSeek-R1为例,其671B参数的规模即使经过INT4量化后,仍需要至少6张高端GPU才能运行,这对于大多数中小型企业和研究机构来说成本过高。知识蒸馏作为一种有效的模型压缩技术,通过将大型教师模型的知识迁移到小型学生模型中,在显著降低模型复杂度的同时保留核心性能,成为解决这一问题的关键技术之一。
|
2月前
|
机器学习/深度学习 算法 数据可视化
近端策略优化算法PPO的核心概念和PyTorch实现详解
本文深入解析了近端策略优化(PPO)算法的核心原理,并基于PyTorch框架实现了完整的强化学习训练流程。通过Lunar Lander环境展示了算法的全过程,涵盖环境交互、优势函数计算、策略更新等关键模块。内容理论与实践结合,适合希望掌握PPO算法及其实现的读者。
338 2
近端策略优化算法PPO的核心概念和PyTorch实现详解
|
1月前
|
机器学习/深度学习 算法 PyTorch
【Pytorch框架搭建神经网络】基于DQN算法、优先级采样的DQN算法、DQN + 人工势场的避障控制研究(Python代码实现)
【Pytorch框架搭建神经网络】基于DQN算法、优先级采样的DQN算法、DQN + 人工势场的避障控制研究(Python代码实现)
|
1月前
|
机器学习/深度学习 算法 PyTorch
【DQN实现避障控制】使用Pytorch框架搭建神经网络,基于DQN算法、优先级采样的DQN算法、DQN + 人工势场实现避障控制研究(Matlab、Python实现)
【DQN实现避障控制】使用Pytorch框架搭建神经网络,基于DQN算法、优先级采样的DQN算法、DQN + 人工势场实现避障控制研究(Matlab、Python实现)
|
6月前
|
缓存 并行计算 PyTorch
PyTorch CUDA内存管理优化:深度理解GPU资源分配与缓存机制
本文深入探讨了PyTorch中GPU内存管理的核心机制,特别是CUDA缓存分配器的作用与优化策略。文章分析了常见的“CUDA out of memory”问题及其成因,并通过实际案例(如Llama 1B模型训练)展示了内存分配模式。PyTorch的缓存分配器通过内存池化、延迟释放和碎片化优化等技术,显著提升了内存使用效率,减少了系统调用开销。此外,文章还介绍了高级优化方法,包括混合精度训练、梯度检查点技术及自定义内存分配器配置。这些策略有助于开发者在有限硬件资源下实现更高性能的深度学习模型训练与推理。
1099 0

热门文章

最新文章

推荐镜像

更多
下一篇
oss教程