【从零开始学习深度学习】36. 门控循环神经网络之长短期记忆网络(LSTM)介绍、Pytorch实现LSTM并进行训练预测

简介: 【从零开始学习深度学习】36. 门控循环神经网络之长短期记忆网络(LSTM)介绍、Pytorch实现LSTM并进行训练预测

1 长短期记忆介绍

LSTM 中引入了3个门,即输入门(input gate)、遗忘门(forget gate)和输出门(output gate),以及与隐藏状态形状相同的记忆细胞(某些文献把记忆细胞当成一种特殊的隐藏状态),从而记录额外的信息。

1.1 输入门、遗忘门和输出门

与门控循环单元中的重置门和更新门一样,如下图所示,长短期记忆的门的输入均为当前时间步输入Xt与上一时间步隐藏状态Ht1,输出由激活函数为sigmoid函数的全连接层计算得到。如此一来,这3个门元素的值域均为[0,1]


image.png

1.2 候选记忆细胞

接下来,长短期记忆需要计算候选记忆细胞C~t。它的计算与上面介绍的3个门类似,但使用了值域在[1,1]tanh函数作为激活函数,如下图所示。


image.png

1.3 记忆细胞


image.png

1.4 隐藏状态


image.png

这里的tanh函数确保隐藏状态元素值在-1到1之间。需要注意的是,当输出门近似1时,记忆细胞信息将传递到隐藏状态供输出层使用;当输出门近似0时,记忆细胞信息只自己保留。下图展示了长短期记忆中隐藏状态的计算。

2 读取数据集

为了实现并展示长短期记忆网络(long short-term memory,LSTM),下面依然使用上一篇文章中的周杰伦歌词专辑数据集来训练模型作词。

数据集获取参见第34篇文章《【从零开始学习深度学习】34. Pytorch-RNN项目实战:RNN创作歌词案例–使用周杰伦专辑歌词训练模型并创作歌曲【含数据集与源码】》。

import numpy as np
import torch
from torch import nn, optim
import torch.nn.functional as F
import sys
import d2lzh_pytorch as d2l
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
(corpus_indices, char_to_idx, idx_to_char, vocab_size) = load_data_jay_lyrics('./RNN-JayZhou/jaychou_lyrics.txt.zip')

3 从零实现长短期记忆网络并进行歌词训练与预测

3.1 初始化模型参数

对模型参数进行初始化,超参数num_hiddens定义了隐藏单元的个数。

num_inputs, num_hiddens, num_outputs = vocab_size, 256, vocab_size
print('will use', device)
def get_params():
    def _one(shape):
        ts = torch.tensor(np.random.normal(0, 0.01, size=shape), device=device, dtype=torch.float32)
        return torch.nn.Parameter(ts, requires_grad=True)
    def _three():
        return (_one((num_inputs, num_hiddens)),
                _one((num_hiddens, num_hiddens)),
                torch.nn.Parameter(torch.zeros(num_hiddens, device=device, dtype=torch.float32), requires_grad=True))
    
    W_xi, W_hi, b_i = _three()  # 输入门参数
    W_xf, W_hf, b_f = _three()  # 遗忘门参数
    W_xo, W_ho, b_o = _three()  # 输出门参数
    W_xc, W_hc, b_c = _three()  # 候选记忆细胞参数
    
    # 输出层参数
    W_hq = _one((num_hiddens, num_outputs))
    b_q = torch.nn.Parameter(torch.zeros(num_outputs, device=device, dtype=torch.float32), requires_grad=True)
    return nn.ParameterList([W_xi, W_hi, b_i, W_xf, W_hf, b_f, W_xo, W_ho, b_o, W_xc, W_hc, b_c, W_hq, b_q])

3.2 定义模型

在初始化函数中,长短期记忆的隐藏状态需要返回额外的形状为(批量大小, 隐藏单元个数)的值为0的记忆细胞。

def init_lstm_state(batch_size, num_hiddens, device):
    return (torch.zeros((batch_size, num_hiddens), device=device), 
            torch.zeros((batch_size, num_hiddens), device=device))

下面根据长短期记忆的计算表达式定义模型。需要注意的是,只有隐藏状态会传递到输出层,而记忆细胞不参与输出层的计算。

def lstm(inputs, state, params):
    [W_xi, W_hi, b_i, W_xf, W_hf, b_f, W_xo, W_ho, b_o, W_xc, W_hc, b_c, W_hq, b_q] = params
    (H, C) = state
    outputs = []
    for X in inputs:
        I = torch.sigmoid(torch.matmul(X, W_xi) + torch.matmul(H, W_hi) + b_i)
        F = torch.sigmoid(torch.matmul(X, W_xf) + torch.matmul(H, W_hf) + b_f)
        O = torch.sigmoid(torch.matmul(X, W_xo) + torch.matmul(H, W_ho) + b_o)
        C_tilda = torch.tanh(torch.matmul(X, W_xc) + torch.matmul(H, W_hc) + b_c)
        C = F * C + I * C_tilda
        H = O * C.tanh()
        Y = torch.matmul(H, W_hq) + b_q
        outputs.append(Y)
    return outputs, (H, C)

3.3 训练模型并创作歌词

同上一节一样,我们在训练模型时只使用相邻采样。设置好超参数后,我们将训练模型并根据前缀“分开”和“不分开”分别创作长度为50个字符的一段歌词。

num_epochs, num_steps, batch_size, lr, clipping_theta = 160, 35, 32, 1e2, 1e-2
pred_period, pred_len, prefixes = 40, 50, ['分开', '不分开']

我们每过40个迭代周期便根据当前训练的模型创作一段歌词。

d2l.train_and_predict_rnn(lstm, get_params, init_lstm_state, num_hiddens,
                          vocab_size, device, corpus_indices, idx_to_char,
                          char_to_idx, False, num_epochs, num_steps, lr,
                          clipping_theta, batch_size, pred_period, pred_len,
                          prefixes)

输出:

epoch 40, perplexity 210.213021, time 2.80 sec
 - 分开 我不的 我不 我不的 我不的 我不的 我不的 我不的 我不的 我不的 我不的 我不的 我不的 我不
 - 不分开 我不的我 我不的 我不 我不的 我不的 我不的 我不的 我不的 我不的 我不的 我不的 我不的 我
epoch 80, perplexity 65.762053, time 2.82 sec
 - 分开 我想你你的你 我想想你你的你 我想要你 我不要 我不要 我不要 我不要 我不要 我不要 我不要 我
 - 不分开 我想你你的你 我想想你你的你 我想要你 我不要 我不要 我不要 我不要 我不要 我不要 我不要 我
epoch 120, perplexity 15.044255, time 2.37 sec
 - 分开 我想你的爱笑  你想你的你笑 想想你的生活 爱爱你 你爱我 我想要这样 你你的话面面你开龙卷风 不
 - 不分开 你有你的话我有妈 难散 你想你的太笑 像  你想你很很久 想这样的生笑 我爱你 你爱我 我想要这样
epoch 160, perplexity 4.358501, time 2.82 sec
 - 分开 我想的回斯坦堡 想想 却又再考倒我 想散 你想很久了吧? 我 想和你的黑笑 我想要你样活 每天歌一
 - 不分开 你已经 说不么 我想就这样牵着你的手不放开 爱可不可以简简单单没有伤害 你 靠着我的肩膀 你 在我

4 基于Pytorch的nn.LSTM模块实现歌词训练与预测

在Pytorch中我们可以直接调用rnn模块中的LSTM类。

lr = 1e-2 # 注意调整学习率
lstm_layer = nn.LSTM(input_size=vocab_size, hidden_size=num_hiddens)
model = d2l.RNNModel(lstm_layer, vocab_size)
d2l.train_and_predict_rnn_pytorch(model, num_hiddens, vocab_size, device,
                                corpus_indices, idx_to_char, char_to_idx,
                                num_epochs, num_steps, lr, clipping_theta,
                                batch_size, pred_period, pred_len, prefixes)

输出:

epoch 40, perplexity 1.022743, time 1.39 sec
 - 分开始打呼 管家是一只会说法语举止优雅的猪 吸血前会念约翰福音做为弥补 拥有一双蓝色眼睛的凯萨琳公主 专
 - 不分开 我不能再想 我不 我不 我不能 爱情走的太快就像龙卷风 不能承受我已无处可躲 我不要再想 我不要再
epoch 80, perplexity 1.066224, time 1.63 sec
 - 分开始打呼 管家是一只会说法语举止优雅的猪 吸血前会念约翰福音做为弥补 拥有一双蓝色眼睛的凯萨琳公主 专
 - 不分开 我不能 爱情走的太快就像龙卷风 不能承受我已无处可躲 我不要再想 我不要再想 我不 我不 我不要再
epoch 120, perplexity 1.015384, time 1.59 sec
 - 分开的爱写在西元前 深埋在美索不达米亚平原 几十个世纪后出土发现 泥板上的字迹依然清晰可见 我给你的爱写
 - 不分开 我不能再想 我不 我不 我不能 爱情走的太快就像龙卷风 不能承受我已无处可躲 我不要再想 我不要再
epoch 160, perplexity 1.010300, time 1.12 sec
 - 分开始爱写在西元前 深埋在美索不达米亚平原 几十个世纪后出土发现 泥板上的字迹依然清晰可见 我给你的爱写
 - 不分开 爱能不能够永远单纯没有悲哀 我 想带你骑单车 我 想和你看棒球 想这样没担忧 唱着歌 一直走 我想

总结

  • 长短期记忆的隐藏层输出包括隐藏状态和记忆细胞。只有隐藏状态会传递到输出层。
  • 长短期记忆的输入门、遗忘门和输出门可以控制信息的流动。
  • 长短期记忆可以应对循环神经网络中的梯度衰减问题,并更好地捕捉时间序列中时间步距离较大的依赖关系。
相关文章
|
2月前
|
机器学习/深度学习 人工智能 PyTorch
PyTorch深度学习 ? 带你从入门到精通!!!
🌟 蒋星熠Jaxonic,深度学习探索者。三年深耕PyTorch,从基础到部署,分享模型构建、GPU加速、TorchScript优化及PyTorch 2.0新特性,助力AI开发者高效进阶。
PyTorch深度学习 ? 带你从入门到精通!!!
|
3月前
|
机器学习/深度学习 数据采集 人工智能
PyTorch学习实战:AI从数学基础到模型优化全流程精解
本文系统讲解人工智能、机器学习与深度学习的层级关系,涵盖PyTorch环境配置、张量操作、数据预处理、神经网络基础及模型训练全流程,结合数学原理与代码实践,深入浅出地介绍激活函数、反向传播等核心概念,助力快速入门深度学习。
204 1
|
3月前
|
机器学习/深度学习 存储 PyTorch
Neural ODE原理与PyTorch实现:深度学习模型的自适应深度调节
Neural ODE将神经网络与微分方程结合,用连续思维建模数据演化,突破传统离散层的限制,实现自适应深度与高效连续学习。
169 3
Neural ODE原理与PyTorch实现:深度学习模型的自适应深度调节
|
2月前
|
机器学习/深度学习 数据采集 人工智能
深度学习实战指南:从神经网络基础到模型优化的完整攻略
🌟 蒋星熠Jaxonic,AI探索者。深耕深度学习,从神经网络到Transformer,用代码践行智能革命。分享实战经验,助你构建CV、NLP模型,共赴二进制星辰大海。
|
6月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于PSO粒子群优化TCN-LSTM时间卷积神经网络时间序列预测算法matlab仿真
本内容展示了一种基于粒子群优化(PSO)与时间卷积神经网络(TCN)的时间序列预测方法。通过 MATLAB2022a 实现,完整程序运行无水印,核心代码附详细中文注释及操作视频。算法利用 PSO 优化 TCN 的超参数(如卷积核大小、层数等),提升非线性时间序列预测性能。TCN 结构包含因果卷积层与残差连接,结合 LSTM 构建混合模型,经多次迭代选择最优超参数,最终实现更准确可靠的预测效果,适用于金融、气象等领域。
|
3月前
|
机器学习/深度学习 传感器 数据采集
基于贝叶斯优化CNN-LSTM混合神经网络预测(Matlab代码实现)
基于贝叶斯优化CNN-LSTM混合神经网络预测(Matlab代码实现)
512 0
|
6月前
|
机器学习/深度学习 存储 PyTorch
PyTorch + MLFlow 实战:从零构建可追踪的深度学习模型训练系统
本文通过使用 Kaggle 数据集训练情感分析模型的实例,详细演示了如何将 PyTorch 与 MLFlow 进行深度集成,实现完整的实验跟踪、模型记录和结果可复现性管理。文章将系统性地介绍训练代码的核心组件,展示指标和工件的记录方法,并提供 MLFlow UI 的详细界面截图。
267 2
PyTorch + MLFlow 实战:从零构建可追踪的深度学习模型训练系统
|
10月前
|
机器学习/深度学习 数据可视化 算法
PyTorch生态系统中的连续深度学习:使用Torchdyn实现连续时间神经网络
神经常微分方程(Neural ODEs)是深度学习领域的创新模型,将神经网络的离散变换扩展为连续时间动力系统。本文基于Torchdyn库介绍Neural ODE的实现与训练方法,涵盖数据集构建、模型构建、基于PyTorch Lightning的训练及实验结果可视化等内容。Torchdyn支持多种数值求解算法和高级特性,适用于生成模型、时间序列分析等领域。
523 77
PyTorch生态系统中的连续深度学习:使用Torchdyn实现连续时间神经网络
|
9月前
|
机器学习/深度学习 自然语言处理 算法
PyTorch PINN实战:用深度学习求解微分方程
物理信息神经网络(PINN)是一种将深度学习与物理定律结合的创新方法,特别适用于微分方程求解。传统神经网络依赖大规模标记数据,而PINN通过将微分方程约束嵌入损失函数,显著提高数据效率。它能在流体动力学、量子力学等领域实现高效建模,弥补了传统数值方法在高维复杂问题上的不足。尽管计算成本较高且对超参数敏感,PINN仍展现出强大的泛化能力和鲁棒性,为科学计算提供了新路径。文章详细介绍了PINN的工作原理、技术优势及局限性,并通过Python代码演示了其在微分方程求解中的应用,验证了其与解析解的高度一致性。
2511 5
PyTorch PINN实战:用深度学习求解微分方程
|
9月前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的【害虫识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
害虫识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了12种常见的害虫种类数据集【"蚂蚁(ants)", "蜜蜂(bees)", "甲虫(beetle)", "毛虫(catterpillar)", "蚯蚓(earthworms)", "蜚蠊(earwig)", "蚱蜢(grasshopper)", "飞蛾(moth)", "鼻涕虫(slug)", "蜗牛(snail)", "黄蜂(wasp)", "象鼻虫(weevil)"】 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Djan
510 1
基于Python深度学习的【害虫识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能

热门文章

最新文章

推荐镜像

更多